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Biochar in Climate Change Mitigation

Large U.S. bi-partisan public support for
soll organic carbon and biochar sequestration —
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Higher pyrolysis
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Climate change mitigation and Land care

No land (crop growth?) benefits = no biochar adoption?
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Climate change mitigation and Land care

(a) Maize
N™ 4808)

{b) Wheat

(N,,= 4448)

Cool temperate dry

13,662 controlled

field trials with 66,593
treatments across a broad
range of soils, climates
and management
practices representing ten
of the 12 soil texture
classes pH values of 3-9,
SOC of 1-58 g kg-1
exceeding the

average range observed
for global producing
regions of these crops
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Climate change mitigation and Land care

Regionally different SOC yield gap — redistribution of
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Not just carbon...

hasphorys in excreto

horus in excreta minus
d ation (! )
. AN »
i oz
\ 3 Sepiesion
o8 \ s
| H (==
% | g
5 S 3
1 H
g
z
1

s Pl
a. in excreta

hosj
tertili
15
1
0.5
0
-05

More N-P-K flushed down the toilet
than added (or imported) as

fertilizer for crops
(Nitrogen: in 56 countries, 127 with livestock)
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Redistribution — example animal excreta

Regional mismatch of resource and need

(causing costs and environmental burden)
Biochar P Demand Poultry Litter Production

e

Blochar Demand (kton DM/year) Broller Litter Production (kton DM/year)
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Spatial Optimization: costs — GHG - CDR

Optimization of pyrolysis locations needed

H 100 7 =
for largest net carbon sequestration T NG
1 7
! ’
— ; ; 80 | ) -
/‘j < Demand Zones Biochar Transportation = ) ,’
4 Slow Pyrolysis Facility ~ (1OM/Y¢ar) g ' ’ ,
p (kton/vear) _’ 100 - 300 E c iz
0-20 =) 300 - 500 = 6
=}
o = 500 - 1,000 s 0
- =) 1,000 - 1,500 Y S >B
i 3 S 24
b 50- 100 ) 1,500 - 2,000 £
: 2 e Bio-oil Transportation )
Upgrading Facility (kgal/year) 0 E
(MMgal/vear) _’ o —--_»A °
! % 0-5 % 24 BENumber of Fast Pyrolysis Facility
7 ! 100 - 1,000 DO Number of Slow Pyrolysis Facility
5-25 i i
* 1,000 - -550 -450 -350 250 -150 -50 50

Unit Emission (kg CO,-eq/ton Biomass)

—o—Pareto Optimal -o—Zero Process of Poultry Litter -0—Complete Process of Poultry litter

450

= net carbon dioxide sequestration
318

300
40

L

250 189
200

150

(kton CO,-eq/year)

100

50

Total Emission and Sequestration Am

| N 0
& = ) | { i A 5 c

T ) acquisition emission production emission
b ] . .. ..

L = transportation emission w storage emission
carbon dioxide sequestration

L




Circular Bionutrient Economy

* Full sterilization, no
hormones &
antibiotics (500°C)
High nutrient content
Separation of N and P
All essential nutrients
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Feces Pyrolysis

6-fold increase in plant-av. P w/w
4-fold increase in total P w/w

Ballroom A04, 11:10
Lucinda Li

* 100.Kg feces.(70% m)
*0.8% phosphorus

91% reduction in mass

No contaminants (heavy metal, PAH,
PCB, dioxin/furans, etc.)

No known pollutants from manure
(pathogens, hormones, antibiotic;
PFAS and microplastics not analyzed)

Cornell University




Nitrogen Recovery from Urine — gas phase

Biochar from wood
]
oo Up to 18%
& NH: -4 Nitrogen

(more than any other
organic soil amendment)
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Biochar Nitrogen Fertilizer Use Efficiency

Similar N uptake between plants treated with biochar exposed to NH,,
compared to conventional N fertilizer

y=34.1+1.63x-0.0286 x> R>=0.66
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Phosphorus Recovery — old story

it i o o) " | Tuscan Grand Duke
' i e & Peter Leopold’s

i chemistry cabinet

(1775-90)

Phosphorus isolation
from urine of soldiers in
the Belvedere Fortress,
Florence

Museo Galileo




Phosphorus Recovery with Biochar - new

Human feces biochar i
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Circular Economy for Nutrients and Carbon

Mining/ Fertilizer
Haber-Bosch Industry How to close the
(local, global) CirCIG?
Landfill/soil&water
pollution

Waste Management

(wastewater treatment, municipal)

Farmer

pd

Consumer

(rural, urban)
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Circular Economy for Nutrients and Carbon

Fertilizer
Industry

(local, global)

How to close the
circle?

Hurdles:
Mismatch in business

model

Waste Management
(wastewater treatment, municipal) Farmer EntrenChed revenue
stream

Consumer

(rural, urban)

E Cornell University
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Circular Economy for Nutrients and Carbon

Fertilizer
Industry How to close the
(local, global) circle?

New
Industry?

(regional, global)

New industry +
multiple concurrent

« Competing . innovation*biochar
» Industry? » Farmer
( )

local, regional, global

Waste Management

(wastewater treatment, municipal)

Tesla provocation

Incentives through
remediation needs
(odor, PFAS eftc)

Consumer

(rural, urban)
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Circular Economy for Biochar-based Materials

Environmental

Industry Environmental
(local, global) application:
Stormwater
: . Water filtration
Circularity? . .
_ Retention basins
Waste Management Public Works Harbor sediments
(landfill, municipal) Remediation
Green roofs
Vertical gardens
Collector
Aggregator

(local, regional)
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Circular Economy for Biochar-based Materials

Agrowastes
(local, global) .
No soil =
Soil Amendment? No circularity?
Natural Decay?
Circularity?
Waste Management Building materials
(landfill)
Consumer

(contractor, builder)
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Not just technology....

Community of practice
Community of purpose

www.CBENetworks.org
2024 Kisumu, Kenya




Take-home principles

Biochar enabling spatial redistribution of carbon and
nutrients from where it is a burden to where it is
needed

Leveraging ‘externalities’ that may emerge as the key
drivers (e.g., mass&odor reduction of wastes and...)

Community of practice&purpose as an outgrowth
and sustainability principle to close the circle

Biochar as a way of thinking
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Cross-Sectoral Approaches for Circularity

Consider “waste” biomass as a value
Consider its carbon, energy and nutrient value
Consider end-of-life even of biochar use in non-soil industries

Requires a global database across sectors (energy-carbon-nutrients)
at high spatial resolution where decisions are made

(country-level data are not enough!) j: [ ‘ ’\3‘0 3
E |

Requires multi-criteria decision support tools
and includes human decision making

o

Al-CLIMATE 6

Requires enabling a global biomass management
industry: redistribution locally & regionally & globally

j) Cornell University




Th '
e Soil Factory: Innovating Circularity

THE SOIL FACTORY

EXPLORE THE NEW THEME PARK ITHACA T PEOPLE
g { bed Visitingthought\eaderswi\l bring

A1 i The Soil Factory gives Pe9p|e from fresh ideas to discussions.
different fields and disciplines the Resident thinkers and provocateurs

ty to experiment, research, challenge the status quo and take
ew directions.

possibili
meet and 'Iulk _qbout ecology, art, activifies in
and sustainability- Collaborations in
different formats investigate the
Circular Bio-Nutrient Economy.

F.U.C.H.S.*
Ecolu

Embracing the notion that the
new toilet must be an enticing
experience, the F.U .C.H.S.* Ecolu
is a stunner and conversation
piece. The outcome is a separation

of urine from fecal matter .

which dramatically facilitates ”

further use of excreta as il
fertilizer.

*Feces and Urine Collection
Hospitality Suite

%‘ EATING & DRINKING

our food and where it comes from makes @
d food that is grown locally
tisfying. On @ larger scale;
ultural production and
levels. In practice @n

x How we grow

\ [e) difference. Community gardens an

f o} and sustainably makes eating more sd
(¥

BIOCHAR
OVEN

Heating the solid excreta serves
three purposes: fo safely and
rapidly sterilize the poo which

food security relies on sufficient agric
food production with high nutrition
research the Soil Factory will focus on good food.

also takes care of any anfibiotics
or hormones that may otherwise URINE
pollute the environment; o BIOCHAR
FERTILIZER STRAW BALE GARDEN
The ultradocal option for urine use fo grow crops

increase the fertilizer value as
volatiles are driven off; optionally
to serve as a an adsorber for
nutrients in the urine that generates
a high-performance fertilizer that is
competitive to commercial products.

even in urban or peri-urban locations also serves as

a community garden that draws a diverse group
of activists, environmentalists, artists, and scientists
to meet regularly while working on growing food.
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Thank you

earithscanl

from Routledge

ENVIRONMENTAL
MANAGEMENT

SCIENCE, TECHNOLOGY AND IMPLEMENTATION

EDITED BY
THIRD JOHANNES LEHMANN
EDITION AND STEPHEN JOSEPH

Late 2024

Including:

* Building materials

« Transport-storage-application

* Animal feed

* Policy

 And updates on previous chapters

Discount for IBl members, advance
purchase and bulk orders
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