A TECHNO-ECONOMIC EVALUATION OF THE FINANCIAL TRADE-OFF BETWEEN THE PRODUCTION OF BIOCHAR, BIOFUEL, AND METHANOL VIA PYROLYSIS UNDER UNCERTAINTY

Jenny Frank, Graduate Research Assistant at SUNY ESF

Advisors: **Tristan Brown**, Assistant Professor of Sustainable Energy* & **Robert Malmsheimer**, Professor of Forest Policy and Law*

*The State University of New York College of Environmental Science and Forestry (SUNY ESF)

STUDY OBJECTIVES

- Performed a complete techno-economic evaluation of the financial trade-off between the production of biochar, biofuel, and methanol via pyrolysis pathways under uncertainty.
 - Analyzed two fast pyrolysis pathways and three slow pyrolysis pathways from literature.
 - Determined starting carbon prices, and a baseline minimum carbon price for each scenario modeled.

SIGNIFICANCE

ENVIRONMENTAL

PPM threshold

Increased global temperatures

Increased importance of specified energy pathway development

DOMESTIC ENERGY POLICY

Marginal decarbonization versus negative emissions (federal efforts)

Interest from policy makers and investors

Slow pyrolysis versus fast pyrolysis; market value

INTRODUCTION

BROWN AND WRIGHT'S (2014) FAST PYROLYSIS MODEL

- Discounted cash flow rate of return calculations to determine the net present value for each scenario
- Scenario inputs and their adjusted values
- Annual cost projections for energy commodities
- Inflation factors based on public price indeces
- Uncertainty from running scenario-specific Monte Carlo Analysis

Scenario 4 Scenario I Scenario 3 Scenario 2 Scenario 5 Slow pyrolysis to Fast pyrolysis to Fast pyrolysis to Slow pyrolysis Slow pyrolysis to biochar biochar & fuels & biochar biochar to biochar and methanol under methanol under 300°C 450 °C Costs: Wright and Costs: Brown et Costs: Brown et Costs: Shabangu et Costs: Shabangu Brown (2007)1 al. $(2011)^2$ al. $(2011)^2$ al. $(2014)^3$ et al. (2014)³

SCENARIOS:

TABLE #I - FINANCIAL ASSUMPTIONS

Financial assumptions	Scenario I (\$MM) ¹	Scenario 2 (\$MM) ²	Scenario 3 (\$MM) ²	Scenario 4 (\$MM)³	Scenario 5 (\$MM)³
Capital Cost	206.0	396.8	122.1	486.5	634.7
Fixed capital investment	171.8	368.5	113.4	451.0	588.4
Fixed operating cost	10.4	16.7	8.5	19.5	25.4
Fuel gas	-5.0	-	-11.9	-	-
Hydrogen cost	27.8	22.7	-	-	-
Other variable cost	10.9	1.9	10.1	41.7	41.7
Electricity cost	-5.6	-12.8	-	-	-
Biochar cost	-15.4	-	-37.5	-20.6	-5.2

TABLE #2 - TECHNICAL INPUTS

Technical Inputs	Scenario I ^I	Scenario 2 ²	Scenario 3 ²	Scenario 4 ³	Scenario 5 ³
Cost basis year	2016	2016	2016	2016	2016
Feedstock (Mg/day)	2000	2000	2000	2192	2192
Operating hours per year	7872 (90.1%)	7900 (90.43%)	7900 (90%)	8000 (91.58%)	8000 (91.58%)
Net power required (MW)	-11.5	-28.2	0.0	0.0	0.0
Fuel gas required (MMBTU/hr)	-110	0	-283.54	0.0	0.0
H2 use (kg/day)	2041	2045	0.0	0.0	0.0
Gasoline production (MGY)	58.2	28.7	0.0	11.9	29.8
Diesel fuel production (MGY)	0.0	28.7	0.0	0.0	0.0
Net biochar CO2e (MT/hr)	-32	0.0	-77	-42.38	-10.69

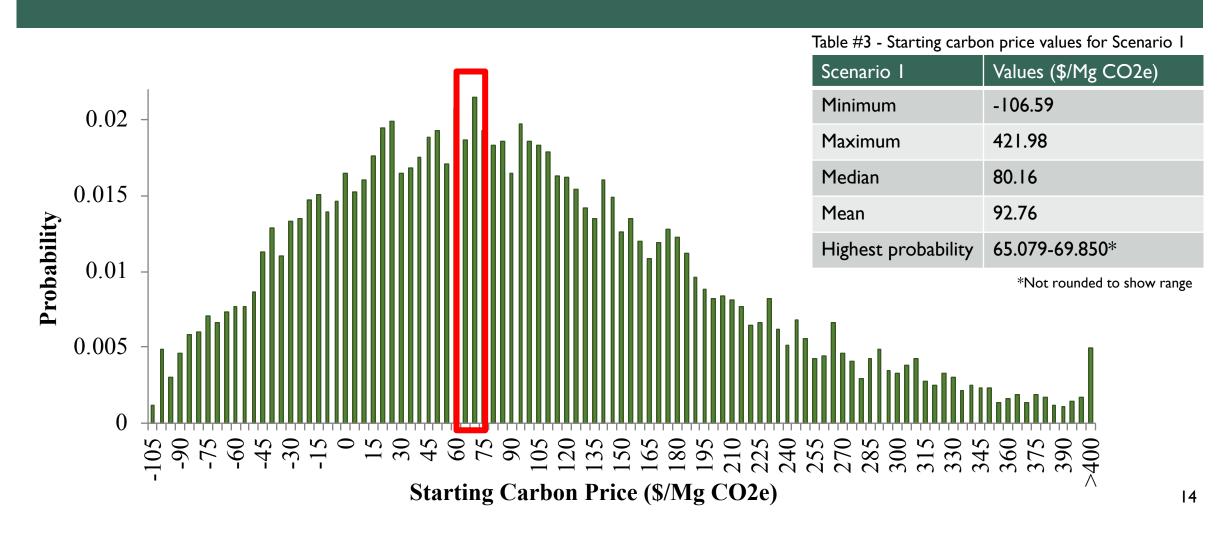
METHODOLOGY

OVERVIEW

- This study updates the Brown and Wright (2014) fast pyrolysis model to 2016 USD.
- The updated model incorporates Renewable Identification Number (RIN) D5 (advanced biofuel) prices under uncertainty
- The current modeling methodology calculates D3 (cellulosic biofuel) prices as a function of D5 prices and cellulosic biofuel waiver credit values.

MODELING

- The harmonization process is used to combine data from a variety of literature sources and to provide researchers with a comparable scenario-to-scenario analysis.
- Steps taken to achieve data harmonization:
 - Identify the peer-reviewed literature that contains the technical and monetary assumptions needed for the specific analysis
 - Identify the cost basis year of all monetary assumptions
 - Adjust the monetary assumptions to a common cost basis year (2016 USD) to harmonize the data, and account for inflation using the Chemical Engineering Plant Cost Index (CEPCI)
 - Convert all technical assumptions to the same units



MODELING

- Monte Carlo Simulation Output probability distributions were developed through 10,000 modeling runs.
- Stochastic analysis:
 - These cash flows are used to create probability distribution curves using Microsoft Excel and Oracle's Crystal Ball Modeling Software for Monte Carlo simulations
 - 95% confidence interval
- Special VisualBasic Code Determined each scenario-specific baseline's minimum carbon price.
- Abatement Mechanism:
 - This analysis assumes an abatement mechanism gives abatement credits for t/CO2e sequestered from biochar
 - The abatement credits are equal to the carbon price

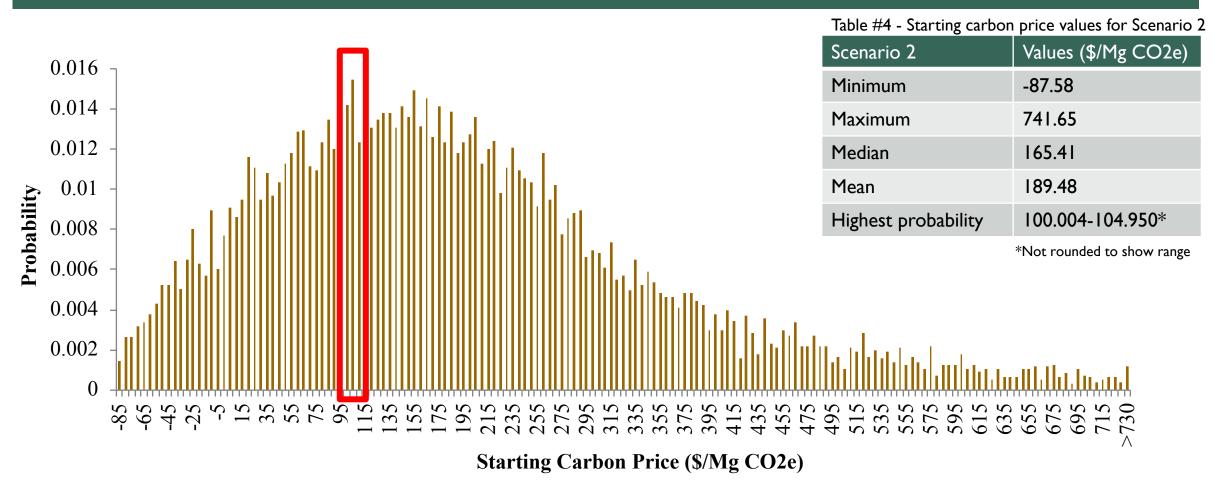

RESULTS & DISCUSSION

FIGURE #I - SCENARIO I: FAST PYROLYSIS TO BIOCHAR

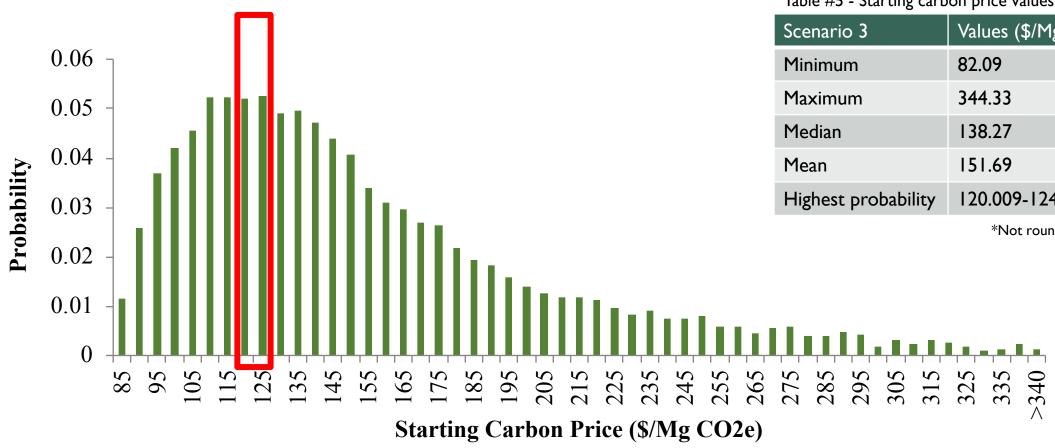
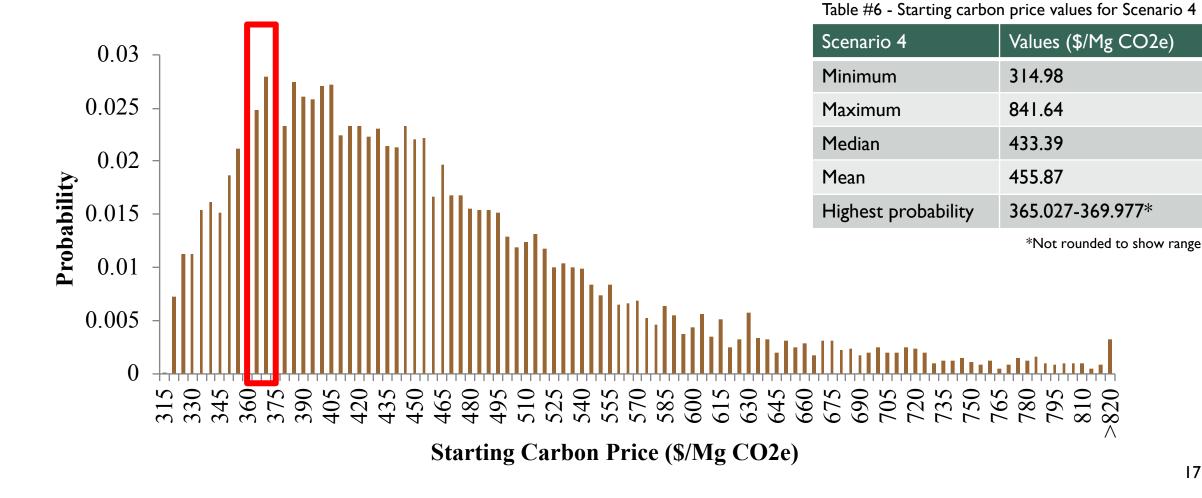


FIGURE #2 - SCENARIO 2: FAST PYROLYSIS TO FUELS AND BIOCHAR

FIGURE #3 - SCENARIO 3: SLOW PYROLYSIS TO BIOCHAR



Scenario 3	Values (\$/Mg CO2e)
Minimum	82.09
Maximum	344.33
Median	138.27
Mean	151.69
Highest probability	120.009-124.980*

*Not rounded to show range

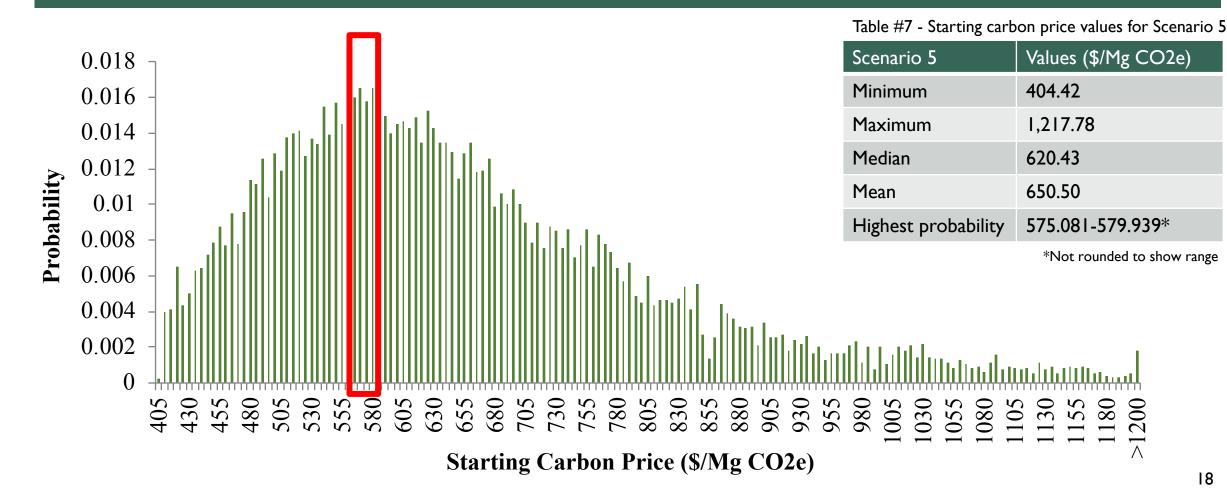


FIGURE #4 – SCENARIO 4: SLOW PYROLYSIS TO BIOCHAR AND METHANOL 300 °C

FIGURE #5 – SCENARIO 5: SLOW PYROLYSIS TO BIOCHAR AND METHANOL 450 °C

TABLE #8 - STARTING CARBON PRICE SCENARIO COMPARISON

Scenarios		Range (\$/Mg CO2e)	Median (\$/Mg CO2e)	Mean (\$/Mg CO2e)	
I	Fast pyrolysis to biochar	-\$106.58 to \$421.98	80.16	92.76	
2	Fast pyrolysis to fuels and biochar	-\$87.58 to \$741.65	165.41	189.48	
3	Slow pyrolysis to biochar	\$82.09 to \$344.33	138.27	151.69	
4	Slow pyrolysis to biochar and methanol (300 °C)	\$314.98 to \$841.64	433.39	455.87	
5	Slow pyrolysis to biochar and methanol (450 °C)	\$404.42 to \$1,217.78	620.43	650.50	

BASELINE MINIMUM CARBON PRICE

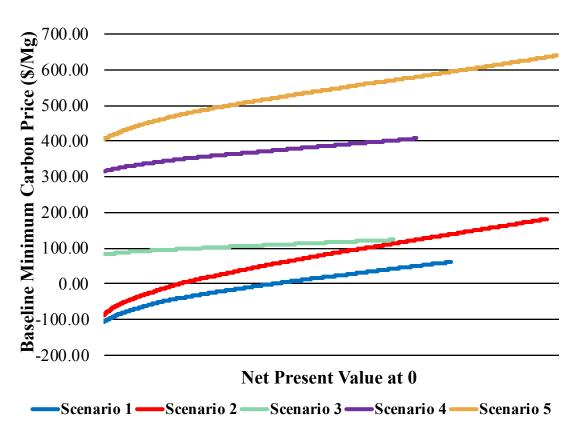


Table #9 - Baseline minimum carbon price (\$/Mg) when NPV is equal to zero

Net present	Baseline minimum carbon price (\$/Mg)	
Scenario I	Fast pyrolysis to biochar	\$61.38
Scenario 2	Fast pyrolysis to fuels and biochar	\$182.03
Scenario 3	Slow pyrolysis to biochar	\$123.48
Scenario 4	Slow pyrolysis to biochar & methanol (300 °C)	\$407.91
Scenario 5	Slow pyrolysis to biochar & methanol (450 °C)	\$642.40

Figure #6 - Baseline minimum carbon price to achieve a net present value equal to zero

CONCLUSION

- Scenario I (fast pyrolysis to biochar) has the lowest baseline minimum carbon price.
- Scenario 5 (slow pyrolysis to biochar and methanol) has the highest baseline minimum carbon price at \$642.40/Mg.
- Based on the scenarios modeled, it is possible to achieve a lower baseline minimum carbon price for a slow pyrolysis pathway over that of a fast pyrolysis pathway.
- The carbon price point where the slow pyrolysis pathway is equal to the fast pyrolysis pathway falls in the range of \$123.49-\$182.02/Mg.

THANK YOU FOR LISTENING! QUESTIONS?

Cornell University Photography, 2018

Jenny Frank, Graduate Research Assistant at SUNY ESF Email: jrfran01@syr.edu

LITERATURE CITED

- I. Wright MM, Brown RC. Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Vol. I, Biofuels, Bioproducts and Biorefining. 2007. p. 49–56.
- 2. Brown TR, Wright MM, Brown RC. Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels, Bioprod Biorefining. 2011;5(1):54–68.
- 3. Shabangu S, Woolf D, Fisher EM, Angenent LT, Lehmann J. Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel. 2014 Jan; 117:742–8.