Biochar for Mining Affected Soils

Christopher Peltz Research Services LLC chris@researchservicesco.com www.researchservicesco.com

Silverton, CO – Zn, Cu, Pb tailings and waste rock, mineralized soils, acid generating rock Vernal, UT – Oil and Gas Well Pad, calcareous soils, compaction and crusting Eureka, NV – Open pit gold mine waste rock pile, calcareous soils, large grain size and low C Living Fresh organisms residue <5% <10%

Stabilized organic matter (humus) 33% - 50%

Decomposing organic matter (active fraction) 33% - 50%

What will biochar do?

- Increase soil organic carbon;
- Increase water holding capacity of soils;
- Increase pH and cation-exchange capacity;
- Decrease soil bulk density;
- Increases percentage of 1-2 mm water stable aggregates;
- Increase population and diversity of soil microorganisms;
- Sequester carbon (70-80% fixed C/mass);
- Reduce transport of PAH's in soils
- Reduce the concentrations of As, Cd, Zn, Pb, Cu, Fe, and N, K in soil leachates

Questions

Will applying biochar improve soil conditions and increase plant growth?

- Vegetation growth and vigor
- Soil moisture dynamics
- Soil chemistry

What are the most effective methods of using biochar for mine lands in terms of \$, C, and restoration outcomes?

- Application rates and methods
- Determine site or site-type specific restoration methods
- Conduct large scale and paired experiments

Silverton, CO

Mary a Baurer

Cunningham Creek

nimas

Cement Creek

Mineral Creek

Gold King – August 2015

Image - Geoff Liesik/Deseret News

Photo: Jerry McBride

THE **Durango** herald

Stories, photos and more GO

News | Sports | Arts & Entertainment | Lifestyles | Opinion | Newsstand | Events

Local & Regional | Webcams | National & World | Elections 2016 | Education | Business | Good Earth

Home Page » News » Local News » Catastrophe on the Animas

Catastrophe on the Animas

Toxic water floods river after EPA disaster at Gold King Mine in Silverton

By Chase Olivarius-Mcallister , Mary Shinn and Shane Benjamin Herald staff writers

Article Last Updated: Thursday, August 06, 2015 11:24pm

The New York Times

Disaster declared In light of the recent dis-charge of concentrated mine

Gold King blowout sends a toxic plume down the Animas.

verton

□ EPA officials: Agency takes full responsibility.

VISIT TIMES II

0000

Drinking water

in Silverton safe

tailings into Cement Creek north of Silverton,town Public Works Director John Site issued

a statement declaring the town's

"The quality of water in the

town distribution system is of same high quality that our

water supply safe.

□ Spill estimated at 3 million gallons of acid-mine waste.

Volume 141, issue 6 Thursday, August 13, 2015

50¢

□ No serious impact yet seen on aquatic life, officials say.

Environmental Agency Uncorks Its Own Toxic Water Spill at Colorado Mine

EARCH

U.S.

Implications for Monitoring Going Forward

- USGS sampled metals in the Animas during spring runoff in 1995-96 finding that the Animas River carries large metal loads during high streamflow
- Mostly colloidal (85-99%)
- Some dissolved (I 15%)
- The GKM plume was similar to a day of high spring runoff for combined metals.
- Monitoring can expect high metal loads during rain and snowmelt and will need to account for the complexity of contributing sources in the watershed
- GKM contaminants may be difficult to isolate during future high runoff from existing and ongoing AMD contamination.

GKM metal load in the lower Animas was similar to one day of high spring runoff

June 6, 2015

 \bigtriangleup Median daily statistic (23 years) — Period of approved data — Discharge

August 5, 2015

Martin Aller

Figure 3. Generalized map of alteration types in the Animas River watershed study area. Data in Bove , Yager and others (2007) and Yager and others (2007).

Field

- Randomized block design
- Three treatments (B, B+M, M)
- Alpine mix of grasses (USFS supplied)
- 30% by volume biochar additions
- VWC (%)
- Veg cover (%) estimates ~40 days , 1 year after seeding

Vegetation Cover

Volumetric Water Content

Comparison (mine)	Diff of Means	Р	
Biochar vs. Mulch	12.73	<0.001	
Biochar vs. Seed Only	12.32	<0.001	
Biochar - Mulch vs. Mulch	11.44	<0.001	
Biochar - Mulch vs. Seed Only	11.03	<0.001	
Biochar vs. Biochar - Mulch	1.29	0.686	
Seed Only vs. Mulch	0.41	0.898	

Comparison (acid)	Diff of Means	Р	
Biochar - Mulch vs. Mulch	13.2	<0.001	
Biochar - Mulch vs. Seed Only	13.1	<0.001	
Biochar vs. Mulch	12.643	0.001	
Biochar vs. Seed Only	12.543	0.002	
Biochar - Mulch vs. Biochar	0.557	0.883	
Seed Only vs. Mulch	0.1	0.979	

Joe and John, 2011

PAT

Ruby Hill Mine - Eureka, NV

Good reclamation @ 10 years

Poor reclamation @ 10 years

~20 yards/ac

>50 yards/ac

Seed Only	Manure	Biochar	Biochar Dust	Biochar 2.5	Biochar 5	Biochar 10	Biochar 20
Control	10	Dust	Manure 10	Manure 10	Manure 10	Manure 10	Manure 10
Biochar	Biochar	Biochar	Biochar	Biochar 2.5	Biochar 5	Biochar 10	Biochar 20
2.5	5	10	20	Manure 2.5	Manure 2.5	Manure 2.5	Manure 2.5

October, 2013

Second summer, # of plant stems

May 6, 2015

Spatial arrangement of vegetation

establishment

Animal browse

Utah State Biomass Resource Group/QEP Resources - Biochar Trials

What is the value of adding biochar here?

Substitute/Enhance/Reduce

Enhanced Reclamation

Program Presented By: Stephanie Tomkinson Senior Biologist October 14, 2010

Environmentally Friendly Drilling (EFD) Workshop

The long-term objective of final reclamation is to <u>set the course for eventual</u> <u>ecosystem restoration</u>, and take the steps necessary to ensure that long-term objectives will be reached through <u>natural processes</u>.

Treatment Ya	<mark>rds of Biochar</mark>
Bio + G + Straw	39
Biochar + Compost Manure	+ Straw 34
Bio + G	33
Bio + NPK	28
Bio + G	28
WE Mulch + Biochar	26
Biochar + Compost Manure	25
Biochar + Compost Manure	+ Straw 25
WE Compost Mulch (black)	+ Biochar 22
Biochar + Compost Manure	22
Bio + Compaction	20
Bio + Straw	19
Bio + NPK	17
Bio + Straw	16
NDK	0
NPK	0
OFP Control	0
G	0
G	0
G + Straw	0
Straw	0
Straw	0
Anew Green Packets	0
WE Compost Mulch (black)	0
WE Mulch	<u>0</u>

Delivered/spread at >10% moisture content to reduce dust.

PATERPILLAS

Surface application

~20 cubic yards/acre

Biochar as part of ongoing soil management and storage

Prevailing wind direction

Soil Storage Berms

Increasing compaction

Dennis Hinkamp – Utah State University Extension

https://www.youtube.com/watch?v=25OR8I-h-pE&feature=youtu.be

NO3--N

NH4+-N

Soil Moisture Sensor Network

Open S

DW _2 Ft

Open N

Soil Moisture

June 30, 2015

May 19, 2016

March 23, 2016

Reduction in soil crusting? Aeolian transport?

Islands of Establishment

Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield

Manuel Olmo ^{a,*}, Ana María Lozano ^a, Vidal Barrón ^b, Rafael Villar ^a

^a Área de Ecología, Facultad de Ciencias, Universidad de Córdoba, 1407 1 Córdoba, Spain ^b Departamento de Agronomía, Universidad de Córdaba, 1407 1 Córdoba, Spain

Science of the Total Environment 562 (2016) 690-700

Name	Wells
KERR-MCGEE OIL & GAS ONSHORE, L.P.	4932
NEWFIELD PRODUCTION COMPANY	4512
EOG RESOURCES, INC.	1945
QEP ENERGY COMPANY	1541
LINN OPERATING, INC.	1518
XTO ENERGY INC	1174
RESOLUTE NATURAL RESOURCES	819
CRESCENT POINT ENERGY U.S. CORP	744
CONOCOPHILLIPS COMPANY	726
BILL BARRETT CORP	712
ENDURING RESOURCES, LLC	633
EP ENERGY E&P COMPANY, L.P.	609
PETROGLYPH OPERATING CO	568
ENERVEST OPERATING, LLC	525
GASCO PRODUCTION COMPANY	302
ULTRA RESOURCES INC	235
QUESTAR EXPLORATION & PRODUCTION CO	220
ANADARKO E&P ONSHORE, LLC	206
CHEVRON USA INC	194
FINLEY RESOURCES, INC.	194
WESGRA CORPORATION	188
CITATION OIL & GAS CORP	186
GULF OIL CORPORATION	166
QEP UINTA BASIN, INC.	165
AMOCO PRODUCTION COMPANY	156
WEXPRO COMPANY	139
RUNNING FOXES PETROLEUM, INC.	132
LONE MTN PRODUCTION CO	131
SHENANDOAH ENERGY INC	127
SHELL OIL COMPANY	124
FOREST OIL CORPORATION	121
HARKEN SOUTHWEST CORP	121
ROSEWOOD RESOURCES INC	121
COASTAL OIL & GAS CORP	116
LOMAX EXPLORATION COMPANY	114
SUPERIOR OIL COMPANY	111
TEXACO INC	111
WESTPORT OIL & GAS CO LP	110
DOMINION EXPL & PROD INC	107

~34,500 total - ~24,850 (Companies with >100 wells)

Biochar Application Studies Key Take Away's:

- 1. Regionally appropriate demonstration sites.
- 2. Detailed site characterization accounts for non-linear effects: animals, climatic variability, business environment.
- 3. Combine quantitative and qualitative, discrete and continuous data.

EPA seeks a home for sludge

Mayflower tailings ponds seen as a possible solution

The Environmental Protection Agency is in discussions with Sunnyside Gold Corp. on the possibility of using the Mayflower tailings ponds to dispose of sludge from the temporary treatment plant at Gladstone.

THE GOLD KING BLOWOUT: ONE YEAR LATER.

said. "We need to find a disposal Rebecca Thomas, manager of location by the end of October." the EPA's Superfund project, said Thomas said the material isn't the limited space at the Gladstone particularly hazardous and could property is running out, and the be deposited in a municipal landlime-based sludge will have to start being removed before winter. fill, but the EPA wants to avoid the high trucking costs and would "There's not enough capacity up there for the winter," Thomas prefer a repository within the

Meanwhile Thomas said about 20 people will be involved in a water sampling effort in September in the basin to monitor conditions at low-flow levels. "We roughly estimate 3,500 cubic yards is currently stored in the drying area (at the Gladstone

See SLUDGE, Page 7

1 of 4 major draining adits for ~6 months

Thank You

Debbie Dumrose – USFS Darren McAvoy – Utah State University Jonah Levine – Confluence Energy/Biochar Solutions **Dusty Moller – Washington State University** Scott Bell – USFS (Ret.) Jake Tibbits – Eureka County Natural Resources **Clark Burton – Barrick Gold Corp** Stephanie Tomkinson – QEP Resources Kyle Hanson – Western Excelsior Corporation Mike Olson – Road Runner Engineering Kay Zillich – BLM (Ret.) -Kirstin Brown – CO DRMS Many others who have helped and supported this work!

Questions?

Chris Peltz chris@researchservicesco.com 970.691.6351

