

WHY MINES?

- 100,000 abandoned mines in the western US
- 20,000 km of rivers and streams
- Low pH and concentrated metals, typically with little or no organic matter
- Mines are some of the most degraded landscapes
- Very few pathways to remediate mines and mine tailings

Microbial Communities at Abandoned Mines are Dominated by Bacteria that Interact with the Mineralogy and Perpetuate Acidic Soil Conditions

Abiotic:
$$FeS_2 + H_2O + 3.5O_2 \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$$

Biotic: $14 + 3.5O_2 + 14H^+ \rightarrow 14Fe^{3+} + 7H_2O$

Abiotic: $FeS_2 + H_2O + \rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+$

WHY IS REMEDIATION OF MINE SITES SO DIFFICULT?

PHYTOSTABILIZATION of the FORMOSA MINE

PROPOSED REMEDIATION of FORMOSA

Experimental Design

- Collect soil (2-10cm) from forest and mine sites
- Culture locally adapted effective microbes (14 d)
- Ferment cultured microbes with biochar, biosolid mix (80:20) = LEM (14 d)
- Fill 2/3 of PVC cylinder with mine soil
- Top 10 cm soil all treatments mixed with 1% lime
- Top 10 cm soil no LEM or 5% false, mine, or forest LEM (30 d)
- Plant with native rye grass (112 d)

Experimental Design: Treatments

Treatment	Lime	Biochar	Biosolids	Microbes	рН	Carbon
Lime	1%	Х	Х	Х	5.9	
False LEM	1%	4%	1%	X	6.1	+
Forest LEM	1%	4%	1%	Forest	6.1	+
Mine LEM	1%	4%	1%	Mine	6.1	+
SPOILS	X	X	X	X	3.1	

Amended Soil

Mine spoils

Experimental Design: measurements

Rhizosphere Root Associated

- Above ground/below ground biomass
- PLFA
- Illumina 16S/LSU
- Soil Enzyme Activities
- SIR
- Total C,N
- Plant available metals, macronutrients
- pH and EC

Mine Spoils

BIOCHAR and BIOSOLID AMENDMENTS PROVIDE an advantage OVER LIME

Plant Growth Metrics and Chemistry

Soil Chemistry (root associated soil)

Microbial biomass in rhizosphere differs

Rhizosphere

Root associated

Mine spoils

Microbial diversity is increased in soils with increased pH

Soil characteristics drive the composition of microbial communities

Bacterial Communities

Fungal Communities

BASED ON pH AND SOIL NUTRIENTS, THESE RESULTS ARE PREDICTED!

Soil characteristics drive the composition of microbial communities

Bacterial Communities

Fungal Communities

BASED ON pH AND SOIL NUTRIENTS, THESE RESULTS ARE PREDICTED!

The addition of LEM *drives* changes in the microbial community.

Bacterial Communities

Statistically differ by treatment and soil type (p<0.001)

Fungal Communities

CONCLUSIONS and FUTURE DIRECTIONS

- The addition of biochar/biosolids increases plant biomass
- The microbes from the LEM do not appear to change community composition of the mine spoils
- The plants grown in LEM recruit specific microbes to the rhizosphere
- This recruitment likely influences plant growth and establishment
- Refining our techniques to inoculate our field study with sitespecific taxa

