Biochar Economics: A Cost-Effectiveness Analysis

David Timmons, Ph.D. Economics Department and School for the Environment University of Massachusetts Boston

david.timmons@umb.edu

USBI 2016 Symposium August 22-25, Corvallis, Oregon

The Plan	
I. Climate Change Benefit-C	Cost Analysis
II. Climate Change Cost Effe Biochar Cost as Soc	
III. Example of Biochar Cost and Social Cost of C	

Climate Change Economics

Benefit-Cost Analysis:

Is $\frac{B_{avoiding climate change}}{C_{avoiding climate change}} > 1?$

Many assumptions:

- climate change effects and their costs
- discount rate for future costs
- distribution of effects
- ability to adapt
- cost of avoidance technology

Climate Change Economics

Social Cost of Carbon:

\$/Mg C such that

 $\frac{B_{avoiding climate change}}{C_{avoiding climate change}} = 1$

Range of Estimates for Social Cost of Carbon,

211 studies (Tol 2008):Median:\$47/Mg CMean:\$88/Mg CStandard Deviation:\$243/Mg C

95th percentile:\$371/Mg C99th percentile:\$1623/Mg C

Estimates embed all assumptions of B/C analysis.

Cost – Effectiveness Analysis (e.g. Ackerman & Stanton 2013)

Starting assumption: climate change must be mitigated Economic question: least costly mitigation methods

Mitigation cost: \$/Mg C avoided

Climate Change Economics

Proposed Social Cost of Carbon (SCC) based on Cost-Effectiveness Analysis:

SCC = cost in \$/Mg C to remove carbon from atmosphere

Research question: What is the cost of atmospheric carbon removal using biochar in Massachusetts?

 $SCC = \frac{(capital \& operating cost - bio oil value - ag value)}{(capital \& operating cost - bio oil value - ag value)}$

Mg C sequestered

Biochar Cost Example

assumption: same plant and operating cost for slow pyrolysis plant.

Fast pyrolysis plant (Bridgewater, 2002)

Assumptions:	1.50	Mg/hr capacity for 12% moisture content chips	
	5,824	hours/year (7 days per week, 16 hours per day)	
	12,133	Mg/year @ 40% moisture content	
	8,736	Mg/year @ 12% moisture content	
	7,688	Mg/year dry weight	
	40	kWh electricity/Mg	
	\$ 30.00	hourly wage, labor	
	\$ 0.12	electricity price/kWh	
	\$ 35.00	woodchip price/Mg, 40% moisture content	
	\$ 5,526,806	capital cost	
	25	year project life	
	6.0%	discount rate	
	10%	overhead and profit rate	
Results:	\$ 1,233,186	total annual cost	
	\$ 160	cost/Mg wood chip feedstock, dry weight	

Biochar Benefit Example

Bio-Oil Value

41.9	crude oil energy value, GJ/Mg	
18.0	bio-oil energy value, GJ/Mg, HHV	Bridgewater 2004
43%	bio-oil proportion of crude oil energy	
\$ 50	assumed oil value/bbl	
7.3	crude oil bbl/Mg	
\$ 367	assumed oil value/Mg	
\$ 158	bio-oil value/Mg	

Biochar Benefit Example

Biochar Agricultural Value

Present value (PV) savings = f(annual savings, discount rate, years)

10%reduction in fertilizer use for given yieldGaunt 2008\$154.38fertilizer cost per acre, corn for grainPenn State corn br\$381.47fertilizer cost per hectareMcCarl 2009\$20.00application cost/MgMcCarl 2009\$6.72annualized application costMcCarl 2009\$38.15annual fertilizer savings per hectareState control\$31.43net annual fertilizer savings per hectareState control	udget
\$ 381.47fertilizer cost per hectareMcCarl 2009\$ 20.00application cost/MgMcCarl 2009\$6.72annualized application cost	udget
\$20.00application cost/MgMcCarl 2009\$6.72annualized application cost	
\$6.72annualized application cost\$38.15annual fertilizer savings per hectare\$31.43net annual fertilizer savings per hectare	
\$ 38.15annual fertilizer savings per hectare\$ 31.43net annual fertilizer savings per hectare	
\$ 31.43 net annual fertilizer savings per hectare	
\$ 6.29 annual fertilizer savings per Mg char	
3% discount rate	
20 years benefit	
\$568PV of fertilizer benefit per hectare	
\$ 114 PV fertilizer benefit per Mg	

Biochar Benefit Example

Biochar Products (Bridgewater 2004)

Percentage of feedstock dry weight			
	fast	slow	
	pyrolysis	pyrolysis	
bio-oil	75%	30%	
syn-gas	13%	35%	
char	12%	35%	
	100%	100%	
Percentage of fee	dstock dry w	eight, net of	
pr	ocess gas		
		slow	
	fast	pyrolysis	
	pyrolysis	(calculated)	
bio-oil	75%	30%	
syn-gas	0%	22%	
char	12%	35%	
	87%	87%	

Social Cost of Carbon

Carbon Sequestration Example

63%	carbon content biochar	Bridgewater
80%	stable portion	Bridgewater
50%	sequestered Mg C/Mg char	

Social Cost of Carbon

Summary of Example

	fas pyroly		ow Iysis
Bio-oil proportion		75%	30%
Bio-char proportion		12%	35%
Stable carbon proportion of biochar		50%	50%
Bio-oil value/Mg	\$	158	\$ 158
Bio-char agricultural value/Mg	\$	114	\$ 114
Pyrolysis cost/Mg feedstock (dry weight)	\$	160	\$ 160
Bio-oil total value/Mg feedstock	\$	118	\$ 47
Bio-char agricultural value/Mg feedstock	\$	14	\$ 40
Net cost biochar/Mg feedstock	\$	29	\$ 73
Net cost biochar/Mg biochar	\$	239	\$ 210
Net cost stable C/Mg = Social Cost of Carbon	\$	473	\$ 416

> Tol 95th percentile ·

Conclusions

Cost of biochar carbon sequestration is one measure of the soical cost of carbon.

□ Final cost estimate is sensitive to a number of parameters:

- pyrolysis bio-oil and biochar portions
- biochar stable carbon portion
- o bio-oil market value
- biochar agricultural value, persistence, and discount rate for future benefits
- pyrolysis capital and operating costs
- biomass feedstock cost
- Goal: identify supply curve (or at least most likely costs) for biochar use in Massachusetts.

Biochar Economics: A Cost-Effectiveness Analysis

David Timmons, Ph.D. Economics Department and School for the Environment University of Massachusetts Boston

david.timmons@umb.edu

USBI 2016 Symposium August 22-25, Corvallis, Oregon

