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Thermochemical Conversion Research at NREL

Research at multiple scales from fundamental, to bench, to pilot scale
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TCPDU Flow Diagram — Configured for Fast Pyrolysis
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Continuous feed plant Fast Pyrolysis: Thermochemical
Variable Residence Time decomposition of biomass in
Variable Temperature the absence of oxygen at
Variable Flowrate elevated temperaturesin a

Ex-Situ CFP coming soon! short period of time
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TCPDU Flow Diagram — Configured for Ex-situ CFP
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Catalytic Fast Pyrolysis: Fast Pyrolysis performed with catalytic upgrading of products while

in the vapor phase. Catalysts target deoxygenation, hydrogenation, and improved C-C
coupling.
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Feedstocks used for fast pyrolysis
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Photo Credit: Bryon Donohoe

Small feed particles, usually <2mm
Pine or forestry residues
3-12% ash content

Char particles reduced in size, but
similar in shape to feed particles

Char properties are highly dependent on the
feedstock and conditions of creation

Char: A carbon-rich derivative of biomass that may be produced by the incomplete
thermal decomposition of biomass in the absence of oxygen
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Char Formation in Fast Pyrolysis

* Oxygen Free Environment
e ~500°C
Heat In ¢ ~1-5seconds

* Heat Penetrates Particle

w‘\

e Char Particle formed
 Smaller relative volume than Biomass Particle

* High surface-area-to-volume ratio
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Fast pyrolysis char reacts with air

Adsorption of Oxygen and Water (Hydration) creates exotherm

Fast Pyrolysis creates char in '
Oxygen-deficient environment
When exposed to air, char will

initially react with air giving off heat _andivd
. . . . Heat Out
Char is self insulating, exacerbating

exotherm (JJ

¢

Exotherm may release enough energy for
temperature to increase until smoldering

commences
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Initial Informal Testing-Char exposed to atmospheric air

Char reached high temperatures and took days to passivate

. 100 -
o 80 -
Drum allowed to self- .r?& 60 -
passivate with lid o ‘
o 40 -
removed = J
2 20 -
5 0
E I I |
0 20 40 60

Time, hours

Char bed has reached smoldering
temperatures and is reducing itself
to ash

NREL | 8



TCPDU Passivation Strategy

Introduction of Oxygen in controlled - rwz LT S
manner Locgl Exhaust .
H . . . em rCT _._'_‘
Monitors Temperature at 18 points within " f%fii ?1_
char bed & [ e
Uses forced convection to speed
passivation process EH-=
Mgpitors Oxygen content entering and Extemal fters {1@ N L tr200n quickdscomneat
exiting drum =2 1
Monitors drum pressure B eom [ |
Uses an adjustable algorithm to handle @A ¢ T L L L g1
. f — Lid and drum body
varying feedstocks ¥ bonded and grounded
Does not allow char bed temp to exceed . -
preset high temperature 112" Stankons stoct tuing
|'II A
Muttipoint Thermocouple, ———————ga| f
Multiple around f
. i 6 heights each
GOAL: Passivate char
safely, efficiently, and |

maintain char properties

Estimated Limiting Oxygen Concentration (LOC) for pyrolysis char
~10% (Hauptmanns 2015) Testing performed has been limited to
~5.5% Oxygen by volume
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Tuning Passivation Parameters-Pine

Gas Flow 200 SLM
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By adjusting the
passivation parameters
we were able to cut
passivation time
dramatically
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Char generated at 15kg/h Biomass:15kg/h Nitrogen feed rate at 500°C, 9 zones EFR

*These conditions were optimized for oil quality targets of concurrent research
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e —
_l_'_,_
50
45
- 40
35
—— 30
25
T T T T T T T 20
0:00 1:12 2:24 3:36 4:48 6:00 7:12 8:24 9:36
Elapsed Time
Gas Flow 250 SLM
—r
_—
e
50
45
ra I 40
L[
e —— 30
25
T T T T T T T 20
0:00 1:12 2:24 3:36 4:48 6:00 7:12 8:24 9:36
Elapsed Time
NREL | 10

Total Flow

Max Temp



Evaluating Passivation Criteria

Passivation strategy lasts much longer than exotherm

* Environmental Oxygen 5.5% Maximum
e Oxygen uptake at equilibrium
* No appreciable temperature rise

Passivation Temperatures and Oxygen Content
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Conclusions

e Very little oxygen needed to create significant exotherm when air is

introduced to char

e Char passivation duration can be greatly reduced by using an active

passivation strategy-we can passivate faster than we generate

* Passivation parameters may be tailored to specific feedstocks and/or

run conditions
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Challenges/Future Work

* Exotherm moves through sample inconsistently

e Sparger clogging reduces expected flows

* Filter clogging reduces expected flows and changes reaction pressure
 Maximum temperature parameter difficult to maintain effectively

* Scalability — Current system difficult to scale effectively

* Add humidity to assess hydration effects
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Thank you
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