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Lee’s NH;-CO,-Biochar Experiment in Collaboration with
Danny Day of Eprida at ORNL in 2002
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Lee started working on biochar for soil amendment and
carbon sequestration since 2002 at ORNL




SEM Images of Cornstover Fast Pyrolitic Char-450C (ORNL 2002-2007)
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Correlation between Biochar 0:C Ratio and Cation Exchange Capacity
Measured in USDA Funded Project at ORNL

Sample 0:C Cation Exchange

(mol ratio) CapaCity: CmOI
(+)/kg

Cornstover 0.1 10.28 + 2.91

Gasification Char-

700 C

Cornstover Fast 0.20 26.36 £ 0.17

Pyrolitic Char-450 C




Application of oxygen-plasma treatment to create biochar product with
higher cation-exchange capacity and wettability
Lee JW, Buchanan AC, Evans BR, Kidder MK (2011) Biochar production method and
composition therefrom, US Patent Application Publication No. 2011/0172092 A1
(US Patent No. US 8709122 B2 and US Patent No. 8398738 B2)
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Lee ODU Lab Biochar Research:

Chemical Analyses and Bioassays of Water-Extractable Substances of
Biochars Produced from Pinewood, Peanut Shell, and Chicken Litter

Pinewood Peanut Shell Chicken Litter
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Evaluate the Potential impact of Biochar Water Extractable
Substances on agriculture environmental sustainability

Goal:
High-Tech Biochar with higher cation exchange capacity and free of
undesirable substances (toxins)

Bioassay: Tests of Biochar Substances with Blue-Green Algae
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Discovered: some of the biochar water extractable substances

are toxic to algal growth
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Application of electrospray ionization (ESI) Fourier transform
ion cyclotron resonance mass spectrometry (FTICR-MS) for
identification of biochar toxins
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Testing of Biochar Production at ODU
Biochars Produced Through Different Thermoconversion Processes Were

Comparatively Studied



Comparative Analysis of Biochars Produced at ODU
Cation exchange capacity of biochars and soil reference sample
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Developing surface-oxygenated biochar through ozonization
Lee JW (2015) Ozonized biochar compositions and methods of making

and using the same,
Patent Application pending
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Developing surface-oxygenated biochar through ozonization
Biochar ozonization treatment reactor system
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Biochar Surface Oxygenation with plasma-based O; treatments
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Ozone Treatment Reducing Biochar pH and Improving
Cation Exchange Capacity

Table 1. Summary data for pH, CEC, and Methylene blue adsorption.

Methylene Blue

Sample pH CEC mmol/kg Adsorption mg/g
Untreated 7.30 £ 0.39 153.9+15.9 1.79+ 0.18
30 Min O, 5.46 + 0.40 302.6 + 32.3 9.22+0.18
60 Min O, 5.33+0.28 310.3 + 24 .4 9.45 + 0.07
90 Min O, 5.28 + 0.33 326.9 + 25.1 9.35 + 0.04

Ref. Soil N/A 131.8+ 9.6 N/A




The Possible Chemistry of Biochar-Surface-Oxygenation
With Ozonization Improving Cation Exchange Capacity

According to our preliminary understanding, the most significant reactions
of O; with organic matter are likely based on the cleavage of the carbon
double bond, which acts as a nucleophile having excess electrons. For
example, the injected O; air stream may, to some extent, lead to the formation
of carbonyl and carboxyl groups on biochar surfaces, by reacting with certain
C=C double bonds of biochar materials at ambient pressure and temperature:

Biochar-CH=CH-Biochar + O; — Biochar-COH + Biochar-COOH

In this aspect, the ozonized biochar product will: 1) become more hydrophilic
since both carbonyl and carboxyl groups can attract water molecules; and 2)
have higher CEC since the carboxyl groups readily deprotonate in water and
result in more negative charge on the biochar surfaces:

Biochar-COOH — Biochar-COO~ + H*



Latest Result: Use of this ozonization technology improved the
CEC value of Oregon Biochar Solutions’ “Rogue Biochar” by a
factor of 5 from 14 to 84 cmol/kg

(chip van) ~ (renewable powerplant)

CLEAN CAN BE COLLECTED FROM RECENTLY
THINNED FORESTS AND BECOME FORLOCAL. .
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Solubilize Phosphate from “Insoluble” Phosphate Materials Using
Ozonized Biochar
Phosphorus sustainability has recently been identified by both USDA and

NSF as one of the major issues for long-term agricultural and
environmental sustainability on Earth

Ca10(PO4)s(OH)2 + Biochar-COOH — HPO4%~ + Cag(PO4)s(OH).* + Biochar-(COOCa)*

Preliminary experimental results on phosphate solubilization of Hydroxyapatite
Ca10(PO4)s(OH)2 with ozonized biochar

Solubilizing Treatment (for 2 Days) Solubilized Phosphate
Concentration

Hydroxyapatite (0.5 g) in 20 ml water with 272+9 mg/L
1 g of ozonized biochar

Hydroxyapatite (0.5 g) in 20 ml water 25+1 mg/L
(Control)
Hydroxyapatite (0.5 g) in 20 ml water with 42+9 mg/L

1 g of conventional biochar




Summary

Biochar cation exchange capacity (CEC) is a key property central to help
retain soil nutrients and reduce fertilizer runoff protecting agroecosystem
water quality;

Biochar with higher CEC value would be highly desirable for industrial
applications including the use of biochar as water filtration material and/or
soil amendment;

We have now experimentally demonstrated that biochar surface
oxygenation with inexpensive ozonization can dramatically improve biochar
CEC value by a factor of nearly 2; improved the CEC value of Oregon
Biochar Solutions “Rogue Biochar” by a factor of 5 from 14 to 84 cmol/kg.

Possible biochar ozonization chemistry: the injected O; may lead to the
formation of carbonyl and carboxyl groups on biochar surfaces, by reacting
with certain C=C double bonds of biochar materials at ambient pressure
and temperature:

Biochar-CH=CH-Biochar + O; — Biochar-COH + Biochar-COOH

Surface-oxygenated biochar may be used to solubilize phosphate from
“insoluble” phosphate materials including phosphate rock materials such
as hydroxyapatite for phosphorus sustainability.
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Preliminary Economic Estimate For Doubling Biochar CEC Value from 150 to 300 mmol/kg
through Ozone-Enabled Biochar Surface Oxygenation

1564 KW perfon bochar
AT T

10 20perton bocher

otal biochar ozonization processing cos $21 per ton biochar

*Using a Primozone Model GM-18 Ozone Generator that generates 900 g of O3 per hour with
energy power consumption at 19.8 kW with industrial electricity price of 6.63 cents per kWh.
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Hydroxyapatite Phosphate Solubilization
Assays with Ozonized Biochar

e Measured the phosphate concentration of all of the samples using the Ion
Chromatography System in Dr. Kumar’s Lab (Kaufman Hall)

Phosphate from Hydroxyapatite when mixed Phosphate from Hydroxyapatite when mixed Phosphate from Hydroxyapatite when mixed
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The possibility of using biochar material as a soil
amendment and carbon sequestration agent

10g Char 10g Soil 9g Soil +1g Char.



Global carbon cycle and the envisioned “carbon-negative” biomass-
pyrolysis biochar approach for carbon capture/sequestration
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Highest Treatment Temperature (HTT)
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Biochar Structures

(a) Slow pyrolysis H O-CCH
(37% CH): b
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Environmental Progress & Sustainable Energy Volume 28, Issue 3, pages 386-396, (2009)

Abdel-Fattah, Tarek M., et al. "Biochar from woody biomass for removing metal contaminants and carbon sequestration." Journal of Industrial and Engineering Chemistry (2014).



Developing surface-oxygenated biochar through ozonization
Lee JW (2015) Ozonized biochar compositions and methods of making

and using the same,
Patent Application pending
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Intensity (a.u.)

Biochar Raman Spectroscopy Showing Ozone-Enabled
Biochar-Surface Oxygenation
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Developing High-Tech Biochar with higher cation exchange capacity
and free of toxins

Approach: Carboxylation of biochar materials through innovative
application of 03/02/CO2 plasma treatments (Lee Lab)




Developing High-Tech Biochar with higher cation exchange capacity
and free of toxins

Approach: Carboxylation of biochar materials through innovative
application of CO2 plasma treatments (Lee Lab)




Separation of biochar toxins from water-extracted substances
through electrodialysis
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Discovered: some of the biochar water extractable substances
are toxic to algal growth




Smokeless Biomass Pyrolysis for Producing
Advanced Liquid Biofuels and Biochar
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