Utilization of manure feedstock biochars as P fertilizer for cotton

T.F. Ducey, G.C. Sigua, P.J. Bauer, K.B. Cantrell, and P.G. Hunt Agricultural Research Service, USDA

Agricultural Research Service

- USDA's chief scientific in-house research agency
- Over 2000 scientists and post-doctoral researchers
- 90+ research locations (in US and abroad)

Vision

... to lead America towards a better future through agricultural research and information.

Coastal Plains Soil, Water, and Plant Research Center

Florence, SC

Biochar

- myriad uses (industrial, municipal, agricultural)
- agricultural
 - emission reduction/adsorption
 - soil amendment
 - conditioning/reclamation, increase soil fertility
 - increase water retention, reduce N leaching
 - ****
- fertilization
 - nutrients (N, P, K, etc)

Biochar as Phosphorus Fertilizer?

- Limited nutrient
 - peak production (predicted 2033)
 - declining supply / increased prices
 - subject to geopolitical influences
 - major supplies are in Morocco, China, Western Sahara
 - reserves in Iraq, Algeria, Syria

Biochar as Phosphorus Fertilizer?

- Raw manure
 - not nutrient dense
 - limited transportation
 - excess nutrients
 - particularly N and P
 - also Cu and Zn
 - active vs passive treatment
 - economics and the political/regulatory landscape
 - limited land application
 - based on nutrient loads
 - pathogens, antibiotic resistance (ARB/ARG)

Experimental Setup

- pot study (6.1 kg)
- Gossypium hirsutum
- 5 biochar feedstocks
 - chicken litter
 - turkey litter
 - beef manure
 - dairy manure
 - swine manure
- Produced at two temperature's
 - 350 °C and 700 °C

Experimental Setup (con't)

- biochar amendment based on P content
 - rate equivalent of 40 mg/kg P₂O₅
- N added at 50 mg N per kg soil (NH₄CI)
- control treatment = unamended soil
 - low P forest soil (Norfolk loamy sand)
- limed to pH 6.0 prior to biochar addition
- irrigated twice daily (0.25" water/pot/day)
- plants harvested on day 60
 - leaf and stem samples collected

Phosphorus Amendment

Treatments	Desired application rate P ₂ O ₅ (mg /kg)	Biochar application rate (g char/pot)	Biochar amendment rate (%)
D-350	40	10.59	0.20%
D-700	40	6.31	0.10%
B-350	40	9.35	0.15%
B-700	40	6.06	0.10%
C-350	40	5.13	0.09%
C-700	40	3.41	0.06%
S-350	40	2.74	0.05%
S-700	40	1.81	0.03%
T-350	40	4.07	0.07%
T-700	40	2.91	0.05%

Soil Phosphorus

Phosphorus 40 mg/kg rate final extractable soil P level = 23.7 mg/kg USDA

Plant Growth Results

Phosphorus Rate Results

P Rate = $-76.3 + (46.35 \times Biomass)$

Nutrient Results

Zinc

Copper

Leaf

Stem

Soil

Nutrient Results (con't)

Iron

Magnesium

Leaf

Stem

Soil

Yet More Nutrient Results

Calcium

Potassium

Leaf

Stem

Soil

Conclusions

- Manure-based biochars make effective P fertilizers
 - free of pathogens and ARB/ARG
 - equal to or greater P rate responses compared to P₂O₅
- Similar uptake rates to conventional fertilizers
 - macro- and micro- nutrients
 - no toxicity concerns
- Low addition rates
 - allow for coupling with other biochars for conditioning purposes

