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CARBON SEQUESTRATION

Biomass
- manure
- organic

i Biofuel Energy
- bioenergy 3

crops {C) 100% - :lc:I-OII Coproducts (oil, cosmetics)
e ugaq;}__ Industry

Transport

(grasses, willows)
- crop residues

Pyrolysis
' Residual heat

Optionally, N, NOy, SOy,
= CO, can be added to
m _ increase C sink and nutrient

™ Returned to content
.~ _ soil as biochar

(Lehmann, 2007)




WHY N,O?

- Agricultures’ largest contributor to climate change

* Delivers N to stratosphere leading to O, destruction

* Addressing N, O also addresses the N cascade

* Biochar can decrease 49% of N,O emissions (Cayuela et al, 2015)
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THE NITROGEN CYCLE
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BIOCHAR-N,O HYPOTHESES

Substrate Availability Soil Ecology Other

1) Surface chemistry 1) Alters soil pH 1) Microbial e” shuttle
. o = (Singhetal., 2010; Van Zweiten et al., * (Cayeulaetal., 2013)
alter N availabil |ty 2010; Kammann et al., 2012; Stewart
etal., 2012; Zheng et al., 2012;
- (Case etal., 2012; Kameyama et al., Ameloot et al., 2013) 2) Ab|ot|c redox
e 2) Alters soil redox status reactions
: ; * (Yanai et al., 2007; Van Zweiten et al., - (Oh et al., 2013; Quin et al., 2015)
- R k | . I I I
2) Retention of mobile N ot foaoisly Sol, aessy et
- (Knowles et al., 2011; Van Zweiten et al., al.,2012; Améloot et al., 2013)

2010; Kammann et al., 2012; Stewart et al.,

2012; Zheng et al., 2012; Clough et al., 2013) 3) Alte rs microbial
community dynamics

3) Alters avallablllty Of » (Lehmann etal., 2011; Case et al.,
: 2012; Kammann et al., 2012; Stewart
Orga NIC C etal., 2012; Zheng et al., 2012)
* (Josephetal,, 2010; Troy et al., 2013) 4) Introduces |nh|b|t0ry
compounds

*  (Spokas & Reicoski, 2009; Taghizadeh-
Toosi et al., 2011; Dempster et al., 2012)



WHY DOES THIS MATTER?

1) Determines long term impacts

2) Allows modeling of biochar-soil biogeochemical
Interactions

3) Essential for targeted biochar applications




STUDY HYPOTHESES

H1) Biochar preferentially retains N preventing microbial
transformation

Expect: T N on biochar J, N,O from biochar —amended soils

H2) Biochar leads to C priming impacting soil denitrifiers
Expect: It CO2 {, N20 from biochar—amended soils

H3) Biochar alters soil aeration status favoring fully denitrifying
conditions
Expect: { O, in pore space |, N20 from biochar —amended soils



EXPERIMENTAL DESIGN

Treatments Agricultural Soils Incubation Soil Moisture Gradient

Amendment

X
Fertilizer

X
Soil Type

X
Water Filled sz o

60% 60% 80% 100%

(n=4)



SOILS

I T

X

ND

Cultivated
Corn

Cultivated o
Wheat A

Rangeland  7°C

Cultivated

°C
Wheat >

mm

665
mm

278
mm

402
mm

35%

14%

28%

11%

32%

50%

54%

60%

34%

36%

19%

29%

0.43%

0.03%

0.02%

0.03%

0.88%

0.90%

5.04%

2.37%

0.13%

0.11% 8.04

0.47% 5.86

0.24% 7.27



BIOCHAR

Biochar Properties

Feedstock
Pyrolysis
Particle Size
Application Rate

C:N

Beetle-killed lodgepole pine
Slow Pyrolysis, 550°C (Biochar Now)

Sieved to between 2 — 2.8 mm

2.5 % by mass (equivalent to 30 tonnes/ha)

255.3
8.49

100.7 m?/g




METHODS

- GHG Emissions

- Inorganic N
- Bulk Soil

- Biochar
Extraction \

- Total Cand N
- pH



GHG DyNAMICS: CO,

Biochar CO, Emission Reductions (Control - Biochar)

e Biochar can resultin minor C priming
e The positive priming is <0.1% of C
added in biochar
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GHG DYNAMICS: CH4

-

Biochar CH, Emission Reductions (Control - Biochar)

* Relatively small changes in CH, sink
e Significant changes in both

directions
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GHG DYNAMICS: N,O

Biochar N,O Emission Reductions (Control - Biochar)

 Significantly decreased N,O emission in all but CO
e Greatest reduction potential when emissions are high
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SOIL MOISTURE AND N, O

Biochar N,O Emission Reduction (Control - Biochar)

No N,O reduction when fully
saturated

Significant N,O reduction at
80%, 60% and 40% suggesting
biochar shifting soil
environment to more aerobic
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INORGANIC N DYNAMICS

Biochar's Effect on Inorganic N (Control - Biochar)

* No significant

change in NO, or

, atend of
mcubatlon (except
increase in NO," by
biochar)

- Extracted biochar

exhibited same
dynamics as bulk
soil with greater
NO, retention by
HEES




OVERALL GHG BUDGET

» (Csequestration generates 100x the GHG emission reductions from N,O
 If biochar's effects last, N,O could match the C sequestration potential on the long term

GHG Emission Reduction (g CO2eq)
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CONCLUSION

* Findings
- Csequestration provides the greatest GHG benefit

- N,O mitigation may also have high GHG mitigation potential, depending on
the mechanisms and thus persistence of effects

* Inorganic N data did not indicate different N dynamics on biochar or changes
in N substrates similar to the N,O decrease

- CO, data showed minimal priming

» Soil moisture gradient indicated biochar shifting soil to more aerobic
conditions

- Next Step
* Further probe mechanisms through targeted experimental design

» Use biochar literature to develop models for biochar-soil biogeochemistry
- Confirm model predictions with applied field studies
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PH EFFECTS

Biochar pH Effects (Biochar - Control)
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