BIOCHAR INCREASES TEMPERATURE
SENSITIVITY OF SOIL RESPIRATION
AND N,O FLUX
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Carbon Cycle
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Atmospheric CO, at Mauna Loa Observatory

PARTS PER MILLION

400

380

360

340

320

Scripps Institution of Oceanography
NOAA Earth System Research Laboratory

Pre-Industrial

December 2014

1960 1970 1980 1990

YEAR




Nitrous Oxide
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Atmospheric N,O at Mauna Loa Observatory
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Agricultural Land
N

0 45% of US land

0 Responsible for 10% of U.S. e
greenhouse gas emissions

Acres of Land in Farms as Percent of Land Area in Acres: 2012

0 Agricultural soils have lost
50% of soil C

Less than 10 30-40 M 70-89
10-29 W so-se M 20ormore




Food Security

2015 Hunger Map

0 “When all people at
all times have access
to sufficient, safe,
nutritious food to
maintain a healthy
and active lifestyle” —
World Food Summit,
1996
o 870 million people

between 2010 —

2012 did not meet
This criteria <5% Very low 5% - 14.9% - Moderately low «® SHARE

Download FAD Hunger Map

www.fao.org



Energy Security
_—

N

015 Energy Security Risk

0 “The uninterrupted
availability of
energy sources at
an affordable
price”

— International

Energy Agency FEREND

. Quartile | (Lowest Risk)
Quartile Il

B quartile 11

[l Quartiie I (Highest Risk)

|| Netinthe Top 75
Energy-Consuming Countries

http://www.energyxxi.org/international-energy-security-risk-index



Food and Energy Security
N

0 As populations increase, the Population Projection
demand for food and
energy will also increase

Total population
10B

o Need to sustainably
intensify agriculture for __—
both food and bioenergy L
to meet this demand

®m Next green revolution 0B
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www.datatopics.worldbank.org



Sustainable Intensification
-

0 Management decisions

o No ftill systems

o Leaving crop resides

o Additions of organic matter
o Using a cover crop

o1 Biochar

Cowpea Cover Crop



My Biochar
—

Property

Volatile Matter

Ash Content

Fixed C

pH

Anaerobic Digester Biochar

5.0kV 10.4mm x200 SE(M)



Field Experiment

Field Project Overview
N

0 Two soils on Oahu
o Oxisol — low fertility Zea Mays

o Mollisol — high fertility

0 Anaerobic Digester Biochar

0 Two crops
o Napiergrass — Ratoon harvest

1 Sweet Corn — Conventional tillage

and harvest

Napiergrass Sweet Corn




Field Experiment

Poamoho Research Station

-y

Initial field view Applying biochar, fish bone meal, and lime Growing Napiergrass




Field Experiment

Waimanalo Research Station
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Temperature Gradient Experiment

Methods
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Temperature Gradient Experiment

Respiration increases with temperature

Oxisol ug C-CO, g soil”

Mollisol ug C-CO, g soil”

Napiergrass Sweet Corn
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0 Temperature increases soil
respiration

o Microbial turnover
1 Reaction rates

o Enzyme activation energy

0 No threshold effects

[Kinetic Energy of Molecules]

Low temperature # of molecules

in transition

High temperature state at high temp

# of molecules
in transition
state at low temp.

# of molecules

Kinetic energy
Energy of activation

Penn State University



Temperature Gradient Experiment

Biochar nearly doubles temperature sensitivity

10
A p=0.017

8 a 450/0 .. .
$ 1 Conditions favorable for certain

00 Biochar may be decomposing

b microbial communities

0 Stable C more susceptible to
degradation at higher temperatures

Soil Lg C-CO, g™ soil per °C

Biochar Control

B p=0.0010

0 Carbon quality is lower in the biochar
soils

0 Increased soil C sequestration

o Less available to organisms

g C-CO, g™ soil C at 26°C
(o)
1

—O— Control
—@— Biochar

T T T T T T
10 20 30 40 50 60 70
Days



Temperature Gradient Experiment

N,O flux temperature insensitive
N

Napiergrass Sweet Corn
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0 N,O Flux temperature
insensitive

1 Initial N concentrations

o N cycle balance

0 Mollisol Napiergrass
Biochar

2 N mineralization rates
o BNF
o Sorption of N

1 Electron shuttle



Temperature Gradient Experiment

Lower abundance at higher temperature
—

140

A 0 No biochar or temperature effects

[y
N
o

o High variability

100

[

Smaller community at higher

(o2}
o
1

temperatures
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S

o Increased respiration rates

Mollisol Napiergrass (g C-CO, g™ soil
S
1

0 . 0 While not significant, nosZ (nitrous
00 LT e _60 ) oxide reductase) abundance was
% o S - higher in the 31°C
§ 400 - . 1 43% difference
i 300 - o No flux differences
% 200 o No biochar differences
ﬁ% 1007 0 But agricultural systems are dynamic
o 23°C 31°C

Julian Yu



Labile Amendment

Methods

Day 60 samples

Labile Samples 93°C
Control <
31°C

A Johnson Matthey Company

D-(+)-Glucose, anhydrous, 99%

L] C
Mollisol 1Os
N . A16828 LOT: G05Z006 25009
CI p | e I’g FCI SS CAS: 50-99-7 + EINECS: 200-075-1 « FW: 180.16 = MP: 147-1563°C
> 23°C i

B i oc h ar \ :»:'-_m Ms‘:;:j%%":s:::’m'w- -
31°C

Glucose

Thermofisher.com

Final Sample Initial Sample Soil DNA extractions and qPCR



Labile Amendment

Microbial Community Response

16S rRNA copies ng™' DNA (Thousands)

nosZ | copies ng‘1 DNA
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Day 60
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- 0.006
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nosZ | ng’' DNA per 168 ng”' DNAat 31°C

0 Glucose increases
populations

0 nosZ abundance
responds differently
than the overall
microbial community
abundance
1 Differences in carbon

lability
o Available N

0 Biochar effecte

Julian Yu



Implications
—

0 Biochar amended soil had increased temperature
sensitivity of respiration and N,O flux

00 Mechanisms are unclear

shift in the ratio of the bacteria that possess the nosZ
gene

Other pathways to N,O production
0 Biochar will sequester carbon in the soil, but may

act as a positive feedback to climate change as
temperatures increase.
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+Renewable Energy in
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Nitrogen Cycle

IPCC, 2013



SEM - Biochar

A) Initial
biochar sample
prior to
amendment

B) Biochar
removed from
year 1 soils
from the
Mollisol
Napiergrass

2.0kV 10.9mm %200 SE(M)

200um

2.0kV 10.9mm x450 SE(M)

100um

100um

Field Experiment

C) Biochar
removed from
year 1 soils from
the Oxisol Sweet
Corn

D) Biochar
removed from
year 1 soils from
the Mollisol
Napiergrass









SEM — Biochar

OkV 10.7m

C

m x1.10k SE(M)

A) The initial biochar sample prior to
amendment in the field.

B) Biochar after 1 year in the bag
from the Oxisol napiergrass plots

C) Biochar after 1 year in the
field from the Oxisol napiergrass
plots

Field Experiment
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