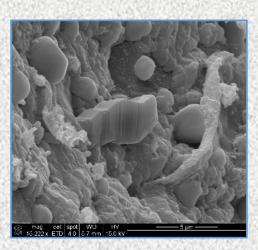
Biochar utilization for soil quality improvement, greenhouse gas reduction, metal, and nutrient sequestration

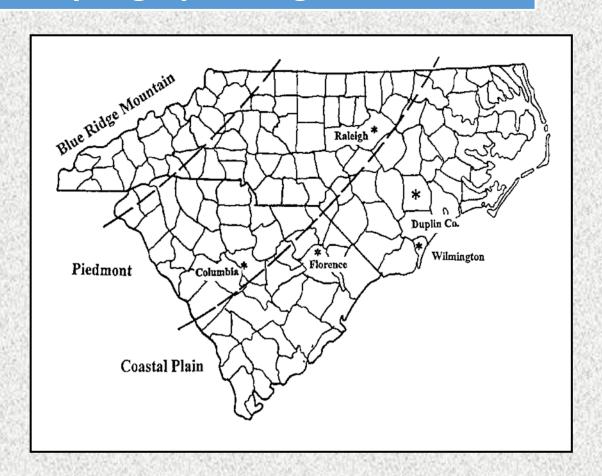
J.M. Novak, J.A. Ippolito, R.D. Lentz, H.L. Collins, R.S. Van Pelt, and K.A. Spokas


Biochar 2018 Conference

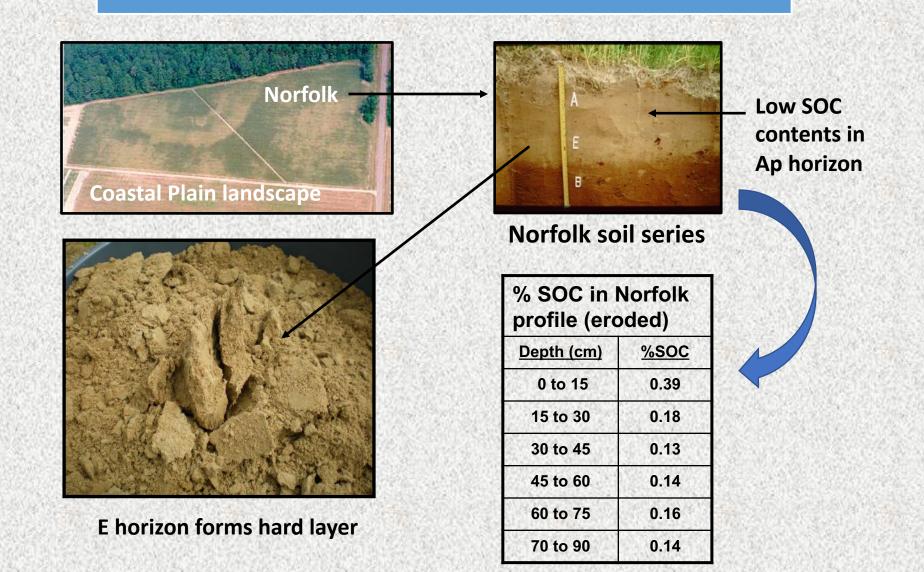
August 20th to 23rd 2018

Wilmington, DE

Biochar pellets



SEM of poultry litter biochar

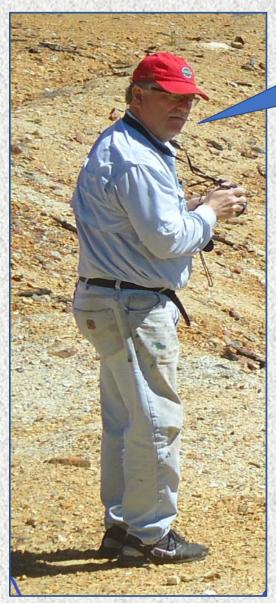

Coastal Plain Physiographic Region of SE USA

- In the SE Coastal Plain, most of the agricultural soils formed in fluvial and marine sediments deposited 0.5 to 5 million yrs ago.
- The soils are sandy with poor fertility, acidic pH values, and low soil SOC contents.

Physiographic regions in NC and SC

Coastal Plain Soil Problems

Tillage and crops management practices to increase profile SOC contents



Soil organic carbon g/kg

Depth (cm)	Tillage	1979	1980-1983	1983-1991
0-5	conventional	6.3 (0.8)	7.2 (0.3)	7.2 (0.2)
	conservation	5.3 (0.2)	7.3 (0.4)	12.0 (0.5)*
5-10	conventional	5.2 (1.1)	7.1 (0.4)	5.6 (0.2)
	conservation	4.6 (0.3)	6.2 (0.4)	6.3 (0.3)
10-15	conventional	3.9 (0.7)	6.0 (0.5)	4.5 (0.1)
	conservation	4.5 (0.6)	5.3 (0.4)	4.8 (0.3)

It took almost 20 years to increase SOC under conservation tillage!

Mark G. Johnson (EPA)

Hey Jeff: Can we use biochar to improve soil health and remediate mine spoils? Wow, a new concept— designer biochar

Mike Bollman and Mark G. Johnson (EPA)

For over 10 years, scientists at ARS-Florence have designed biochars for soil health improvements and mine spoil remediation

Feedstock selection

Vary pyrolysis temperature

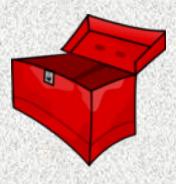
Vary biochar morphology

Bench-scale expt.

Greenhouse experiments

Field-scale biochar plots

Coordinating designer biochar selection


Establish soil/spoil deficiency

Select the appropriate designer biochar from the 'biochar tool box'

Determine biochar application rate, morphology, and application method

Application rate

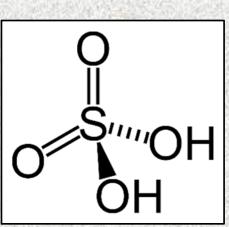
Pellet vs. dust

Application method

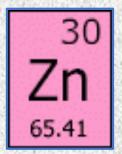
Designing relevant biochars

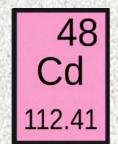
Single fee	dstock/blend	Pyrolysis (°C)	Particle size	Soil impact
²⁰⁰⁸ Swit	chgrass	250 to 500	Dust (< 0.42-mm)	+ water storage
Hard	dwoods	350 to 700	Dust (<0.42-mm)	+ water storage
Peca	n shells	700	Dust (< 0.42-mm)	+nutrients/lime
Lobiolly	pine chips	350 to 700	Dust, pellets (> 2-mm)	C sequestration
Pine chips,	/poultry litter	350 to 700	Dust, pellets (> 2-mm)	C sequestration & balance soil [P]
²⁰¹⁵ Miso	canthus	500	Flakes (2-6 mm)	Metal binding & enzymes
‡Lodge	pole pine	500	Flakes (2-6 mm)	Metal binding
‡Poultry litter & beef cattle manure		500	Flakes (2-6 mm)	Metal binding, liming & soil microbiology

SE USA sandy soils


Mine spoil remediation:

Formosa mine site


Tri-State mine site



Remediation of the Formosa mine site

Phase 1 (2017-2018)

120 holes dug

Biochar + biosolids + lime added

Pine trees planted

Establish a pine tree plantation

Phase 2 (2018-2019)

Collaborative projective funded through an Interagency Agreement.

TSM remediation: Establishing background soil properties

Physical issues

Soil supplied to ARS-Florence is unweathered C horizon with many coarse fragments.

Soil contains pockets of silts/clays exhibiting distinct redoxymorphic features (mottling).

Sieving soil reveled that almost 30% of material was > 12.7 mm coarse fragments.

Chemical issues

CaCl₂ extr (0.01 M)	mg/kg
Cu	0.93
Cd	21
Zn	376

Material	pH (H ₂ O)
Clay (8 mm)	4.71
All soil (8 mm)	5.12
All soil (12 mm)	4.92
Rocks (> 12.7 mm)	4.88

Coordinate biochar types for use in a Switchgrass growth experiment with Tri-State Mine soil (2018)

-	0.000	1000	THE WORLD
11	vitch	ησι	rass
J v	VICCI	'6'	433

% Application rate (w/w)		
<u>Biochar</u>	Manure compost	
0	0	
0	2.5	
0	5	
2.5	0	
2.5	2.5	
2.5	5	
5	0	
5	2.5	
5	5	

What did we find?

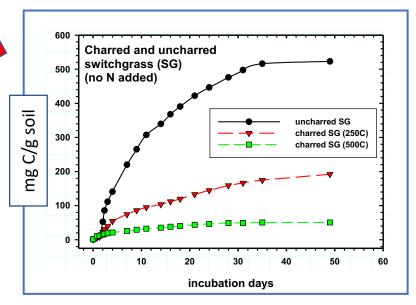
Pot 112 is TSM treated with 2.5% lodgepole pine biochar & 2.5% manure compost.

AGB = 0.084 g; pH = 4.8

Salt-Cd = 135 mg/kg; Salt-Zn = 270 mg/kg Shoot-Cd =135 mg/kg; shoot-Zn=2,961mg/kg Pot 86 is TSM treated with 5% beef manure biochar & 2.5% manure compost.

AGB = 2.017g; pH = 5.76

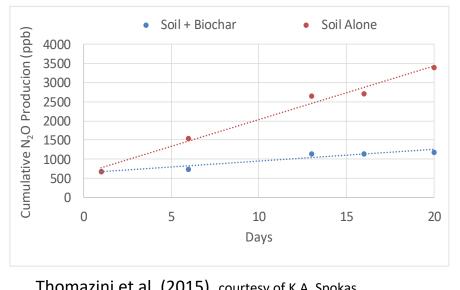
Salt-Cd = 8.4 mg/kg; Salt-Zn =150 mg/kg Shoot-Cd= 44.5 mg/kg; shoot-Zn= 761mg/kg

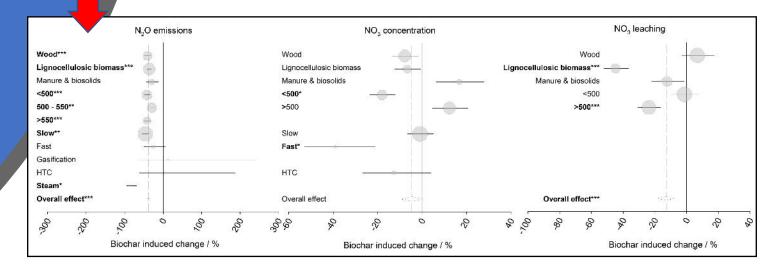

Biochars & greenhouse gas production (CO₂)

 Higher pyrolysis temperatures (> 500°C) causes more C distribution in aromatic-C structures (less decomposable).

 Consequently, a high temperature produced biochar incubated in soil is more resistant to microbial oxidation and conversion to CO₂.

 Biochar's structural make up is one factor that determines its C contribution as CO₂ to the atmosphere and as C to the soil organic matter pool.




Sigua et al. (2016)

Biochar & greenhouse gas production (N₂O)

- In a laboratory study, Thomazini et al. (2015) reported a suppression of 63% of N₂0 production after biochar addition to several soil-types.
- In a meta-analysis of biochar:denitrification studies (n = 88), the overall N_2O emission reduction was 38%, NO₃ concentrations were unaffected while NO₃ leaching was reduced by 13% (Borchard, 2018, manuscript in preparation).
- Overall, the literature reports that biochars role with increasing/decreasing denitrification and conversion of N as nitrous oxide (N_2O) is mixed.

Thomazini et al. (2015), courtesy of K.A. Spokas

Borchard et al. (2018), used with permission (Funded through a USDA-NIFA/FACCE-JPI project)

Activated Biochars for P sorption in Waste Streams



Targets

Pelletize and pyrolyze

Heavy metals in mine spoils

Interagency Agreement just established between ARS and EPA (Philly office)

Conclusions

- Biochars can be designed to target their chemistry to a specific soil/spoil deficiency.
- The background soil/spoil deficiency must be well established prior to designer biochar production.
- The designer biochar technology will be applied to counter poultry related soil and environmental issues in the Delmarva area (2018-2020).