Biochar Supplementation in Growing and Finishing Cattle Diets

Tom Winders (MS student), Melissa Jolly-Breithaupt (PhD student), Jim MacDonald, Galen Erickson, Andrea Watson

University of Nebraska-Lincoln

Department of Animal Science

Biochar and Cattle

- Potential Benefits
 - Greenhouse gas (CH₄, N) emissions
 - Efficiency (digestibility)
 - Animal health

- CH₄ 28x warming potential of CO₂
- Energetic loss
 - 2-12% of Gross Energy intake is lost as methane (Johnson & Johnson, 1995)
 - \downarrow CH₄ = \uparrow energy retention = \uparrow efficiency
- Efficiency measured relative to production output (lbs of beef)

Leng et al., 2012 Animal Performance

- Biochar from rice husks
- 0.6% of DM
- Forage based diets
- Small animals (184 lbs)
- Low weight gain (0.26 lb/d)
- Intake (5 lb/d; 2.7% of BW)

healthline.com

healthyt1ps.com

Leng et al., 2012 Animal Performance

- Biochar from rice husks
- 0.6% of DM

	Biochar	No Biochar	<i>P</i> -Value
ADG, lb/d	0.28	0.23	0.056
DMI, lb/d	4.95	5.07	0.90
Feed:Gain	19.1	23.2	0.03
CO ₂ , ppm	2234	1938	< 0.01
CH ₄ , ppm	64.0	84.5	0.07

Leng et al., 2012 Animal Performance

- Biochar from rice husks
- 0.6% of DM

	Biochar	No Biochar	P-Value
ADG, lb/d	0.28	0.23 71.7% improves	ment in ethoduction.
DMI, lb/d	4.95	17.7% impreduction	0.90
Feed:Gain	19.1	3.2	0.03
CO ₂ , ppm	2234	1938	< 0.01
CH ₄ , ppm	64.0	84.5	0.07

UNL metabolism study

- 6 animals
- Digestibility
- CH₄ and CO₂ production

High Plains BIOCHAR

- Premium raw biochar to supercharge your soil
- , 100% natural soil conditioner for healthier plants
- Benefits to your soil that last 100's of years
 Responsibly made with 100% recycled wood waste

Blocker is a special type of chercoal made from cooking organic material and temperatures in the absence of oxygen. This process creates a carbon rick product is extremely porous with massive amounts of surface area, essentially a blocker organic series as well produced. As a soil amendment this sponge retains water and nutrients as well produced to the control of the control of

Growing Trial

- 6 periods
- 3 treatments
- 1164 lb BW

Finishing Trial

- 3 periods
- 3 treatments
- 1284 lb BW

Experimental Design

Growing study: acid insoluble ash Finishing study: titanium dioxide **0, 0.8, and 3%** biochar in diet

Experimental Design

- Statistics
- MIXED procedure of SAS
- Steer = random
- Trt & Period = fixed
- PROC IML for contrast coefficients
- *P* < 0.10

- Growing
 - Digestion = 6x6 replicated
 Latin rectangle
 - Gas = 5x6 unbalanced replicated Latin rectangle

- Finishing
 - 6x3 balanced Latin rectangle

Biochar

- Dioxins (PCDDs) and Furans (PCDFs)
 - Non detectable (<10.0 ng/kg)
- Cadmium, lead, arsenic, mercury
 - Non detectable (<0.98 mg/kg)
- 85% C, 0.7% N, 94% OM
- pH 8.0

Biochar

Particle size 44% 1.18 to 3.35 mm

Growing Trial – Diet

Ingredient, % (DM basis)	Treatments				
Brome hay	•	<u> </u>	-		
Wheat straw	-				
Corn silage	4	30			
Wet distillers grains	•	22			
Supplement	7	6.2	4		
Biochar	0	0.8	3		

Supplement contained limestone, tallow, urea, salt, trace minerals, vitamins A-D-E, Rumensin, and biochar replacing fine ground corn

Growing Trial

	Biochar inclusion, % DM				<i>P</i> -value	
	0	0.8	3	SEM	Lin	Quad
OMI, lb/d	16.0	15.8	15.7	0.42	0.52	0.74
OMD, %	58.6	60.6	57.7	1.16	0.31	0.10
NDFi, lb/d	9.33	9.22	9.42	0.24	0.62	0.57
NDFd, %	50.5	52.6	48.2	1.55	0.08	0.10

Growing Trial

	Biochar inclusion, % DM					<i>P</i> -value	
	0	0.8	3	SEM	Lin	Quad	
CH ₄ , g/d	109	97.2	100	5.1	0.42	0.14	
CO ₂ , g/d	5549	5051	5163	172	0.19	0.05	
CH ₄ , g/lb DMI	6.23	5.64	5.77	0.27	0.43	0.18	
CO ₂ , g/lb DMI	319	293	300	8.2	0.27	0.06	
CH ₄ :CO ₂	0.02	0.019	0.019	0.001	0.67	0.70	

Growing Trial

	Biochar inclusion					
	No	Yes	<i>P</i> -value			
CH ₄ , g/d	109	98.6	0.11			
CO ₂ , g/d	5549	5107	0.02			
CH ₄ , g/lb DMI	6.23	5.70	0.13			
CH ₄ , g/lb DIVII CO ₂ , g/lb DI 8% reduction	319	296	0.03			

Finishing Trial – Diet

Ingredient, % (DM basis)	Treatments				
Dry rolled corn	←	<u> </u>			
Corn silage	•	 	-		
Wet distillers grains	•	<u> </u>			
Supplement	7	6.2	4		
Biochar	0	0.8	3		

Supplement contained limestone, tallow, urea, salt, trace minerals, vitamins A-D-E, Rumensin, and biochar replacing fine ground corn

Finishing Trial

	Biochar	Biochar inclusion, % DM				<i>P</i> -value	
	0	0.8	3	SEM	Lin	Quad	
OMI, Ib/d	22.4	24.4	22.9	0.95	0.81	0.06	
OMD, %	72.8	70.4	68.7	1.65	0.13	0.52	
NDFi, lb/d	6.64	7.37	7.44	0.31	0.05	0.09	
NDFd, %	56.6	54.2	53.4	3.37	0.39	0.59	

Finishing Trial

	Biochar inclusion, % DM				<i>P</i> -value	
	0	0.8	3	SEM	Lin	Quad
CH ₄ , g/d	141	128	122	13.9	0.39	0.62
CO ₂ , g/d	8204	8402	7755	558	0.50	0.66
CH ₄ , g/lb DMI	5.68	4.64	4.82	0.66	0.51	0.32
CO ₂ , g/lb DMI	335	302	301	27.9	0.52	0.51
CH ₄ :CO ₂	0.017	0.016	0.016	0.002	0.56	0.56

Finishing Trial

	Biochar inclusion					
	No	Yes	<i>P</i> -value			
CH ₄ , g/d	141	125	0.32			
CO ₂ , g/d	8204	8079	0.86			
CH ₄ , g/lb DMI CO (a/lb DM) 16.7% reduction	5.68	4.73	0.22			
CO ₂ , g/lb DN 16.7%	335	302	0.34			

Mechanisms?

- Porous biochar
 - Surface area: weight
 - Absorb gases

- Microbial population shift / Improved microbial habitat
 - Microbial growth efficiency
 - H transfer/sink

Costs

Benefits

- Cost of feed
- Implementation

- Drawbacks?
 - Meat quality / safety
 - Digestibility/performance
 - Adsorption key nutrients

- CH₄ reduction
 - Energy efficiency
 - Environmental
- Recycling of 'nutrients'

Future

US Forest Service

- 2 treatments
- Growing and Finishing
- ~100 steers fed in 10 pens
- Performance: weight gain, feed intake, efficiency, carcass data
- Gas emissions: CO₂ and CH₄
- FDA waiver (FUA)

Future

Nebraska Environmental Trust

- Manure application
- 3x2 factorial
 - 0, 5, 10% biochar
 - 30 vs 60 days
- Nutrient losses
 - Organic matter, N (total, organic, ammonium, nitrate)
 - CH₄ production
 - Manure from cattle fed biochar

Biochar in Cattle Diets

Growing calves

8% reduction in CH₄

Finishing cattle

16% reduction in CH₄

Opportunity?

- Animal health?
- N capture in manure
- FDA approval needed

- High Plains Biochar
 - Rowdy Yeatts

- Nebraska Forest Service
 - Adam Smith
 - Heather Nobert

