Biochar 2018 Conference August 21, Wilmington, DE

Transformation of Phosphorus in Speciation and Bioavailability during Converting Poultry Litter to Biochar

Mingxin Guo¹ and Hong Li²

- ¹ Dept. of Agriculture & Natural Resources Delaware State University, Dover, DE 19901
- ² Dept. of Animal & Food Sciences University of Delaware, Newark, DE 19716

Research Problems

Poultry Litter
US ~12 million dry tons/yr

Research Problems

Organic fertilizer

Soil conditioner

Research Problems

Nutrient forms? Availability?

Objectives

- > To determine nutrient recovery when PL is converted to biochar
- ➤ To investigate transformation of P in PL during pyrolysis
- ➤ To examine the existing forms and lability of P in PL-derived biochar

1) Biochar generation

Complete pyrolysis at 300, 350, 400, 450, 500, 550, and 600°C

2) Biochar characterization

Ground to <0.15 mm

Yield

OC content

Ash content

pH

Salinity (EC)

Nutrient contents

Specific surface area

Porosity

Cation exchange capacity

Surface acid functional groups

³¹P SP/MAS NMR

3) Biochar P analysis

<0.15 mm

Total P

Inorganic P (1 M HCI extraction)

Organic P

4) Biochar P extractability assessment

<0.15 mm

Batch extraction (1:50 s/sol, 24 hr) by

- i. Water
- ii. 1 M HCI
- iii. Mehlich-3 solution
 (NH₄F + EDTA + NH₄NO₃ + HNO₃ + HA)
- iv. Bray-1 solution (0.025 M HCl in 0.03 M NH₄F)
- v. Olsen solution (0.5 M NaHCO₃, pH 8.5)

Extract P: Colorimetric method following $K_2S_2O_8 + H_2SO_4$ digestion

5) Biochar P fractionation

<0.15 mm

Sequential extraction (1:50 s/sol, 24 hr) by

- a. Water
- b. $0.5 \, \text{M} \, \text{NaHCO}_3$
- c. 0.1 M NaOH
- d. 1 M HCI
- e. Residual

Extract P: ortho-P, poly-P, and org-P by colorimetric methods

Results

1) Nutrient recovery in biochar

Pyro. T °C	Yield	%OC Content Recovery		%N		%P Content Recovery	
	%			Content	Recovery		_
Raw PL*	100	35.51	100	3.07	100	1.37	100
Char300	60.13	37.99	64.32	4.17	81.80	2.27	99.76
Char350	56.17	37.65	59.56	3.22	59.03	2.40	98.48
Char400	51.52	36.10	52.38	2.63	44.19	2.63	98.87
Char450	48.69	35.22	48.30	2.23	35.33	2.66	94.50
Char500	47.57	34.47	46.18	1.21	18.84	2.79	96.77
Char550	46.62	33.88	44.47	0.31	4.73	2.98	101.54
Char600	45.71	32.52	41.85	0.12	1.76	3.05	101.90

^{*} Ash content 28.53%

2) Transformation of poultry litter P during pyrolysis

3) Fractionation of P in biochar (by sequential extraction)

3) Fractionation of P in biochar (by sequential extraction)

Species distribution of extractable P in PL-biochars

Water extractable P

Org-P Ortho-P Poly-P ₾ 100 % of Water Extractable 80 **60** 20 Char300 Char350 Char400 Char450 Char500 Char550 Char600 Raw PL

Total extractable P

³¹P SP/MAS NMR spectra of PL-biochars

4) P Lability of PL-derived biochar

Bray-1
0.025 M HCI in 0.03 M NH₄F
Labile P evaluation

Mehlich-3
NH₄F + EDTA + NH₄NO₃ + HNO₃ + HA)
Long-term available P evaluation

Conclusions

- Loss of N was severe during pyrolytic conversion of PL to biochar, especially at ≥450°C
- During pyrolysis most organic P in PL was converted to inorganic forms mainly as hydroxyapatite and oxyapatite
- Higher-T pyrolysis further reduced the waterextractability and lability of P in PL-biochar
- >70% of P in PL-biochar produced at ≤500°C was Mehlich-3 extractable and phytoavailable
- Low T (350–450°C) was recommended for converting PL to biochar