Biochar: More than meets the eye

KURT SPOKAS

USDA-ARS ST. PAUL, MN USA

Water

"Water is the driving force of all nature."

- Leonardo da Vinci

Physical Breakdown

Physical breakdown of the biochar accounts for <u>3 orders</u> of magnitude higher losses of C than microbial degradation for the initial 24 hour period

Liquid Water Uptake

Salts

Seawater – Adds more diffusional character to water uptake

No clear impact of cation type?

However, larger cation impact on drying rates

Water Vapor Sorption

Coconut BC – 575 °C biochar

Biochar – Drying Rate Kinetics

Sharp Reduced Time Curves: Rate Limiting Kinetic Mechanisms

Kinetic expression that describes any process by:

$$G(\alpha) = A\left(\frac{t}{t_{0.333}}\right)$$

 $G(\alpha)$ = theoretical kinetic expression A is a constant t is the time $t_{0.333}$ is the time to the one-third completion

Summary of theoretical kinetic relationships $[G(\alpha)]$ and value of constant (A) for a time ratio occurring at 33.33% completion.

Mechanism	Symbol	G(a)	A
Phase boundary controlled reaction (contracting area; bidirectional shape)	R2	$2\left[1-\sqrt{(1-\alpha)}\right]$	0.3670
Phase boundary controlled reaction (contracting volume; heating)	<i>R3</i>	$3\left[1-\sqrt[3]{(1-\alpha)}\right]$	0.3793
Unimolecular decay law (first order reaction) Instantons growth; unidirectional growth	F1	$-\ln(1-\alpha)$	0.4057
Random nucleation/growth	A2	$\sqrt{\left[-\ln(1-\alpha)\right]}$	0.6368
(Johnson- <u>Mehl-Avrami</u> equations)	<i>A3</i>	$\sqrt[3]{\left[-\ln(1-\alpha)\right]}$	0.7402
1-D diffusion	D1	α^2	0.110
2-D diffusion	D2	$(1-\alpha)\ln(1-\alpha) + \alpha$	0.0630
3-D diffusion	D3	$\left[1 - \sqrt[3]{(1-\alpha)}\right]^2 \qquad 0.0160$	
3-D diffusion (Ginstein-Brounshtein Eqn)	D4	$(1-\frac{2\alpha}{3})-(1-\alpha)^{\frac{2}{3}}$	0.0146

Sharp Reduced Time Curves

Biochar Kinetic Analysis -

Biochar Sorption – Maybe its not the carbon?

Aged Biochar - Fairly Uniform Coating

Biochar

Cations – but where is N, P, Cl, Br, OH, O ???

Biochar: Fluorescent dyes

Initial

Biochar: Fluorescent dyes

Initial

With dye

Dipole-Dipole Interactions

Comparing evaporation rates of various solvents from saturated biochar samples

Correlation Matrix: BC Drying Rate vs. Solvent Properties

Pearson Correlation
(R2)

Solvent Dipole Moment

O.432

Double Moment

O.432

*

Dipole-dipole interactions?

Comparing evaporation rates of various solvents from saturated biochar samples

Correlation Matrix: BC Drying Rate vs. Solvent Properties		
	Pearson Correlation (R ²)	
Dipole Moment	0.432	
Dipole Length	0.433	
Solvent Boiling Point (°C)	0.225	
Magnetic Susceptibility (cm³/mol)	0.942	

At the molecular scale

GRAPHITIC CARBON STRUCTURES (sp² HYBRIDIZATION)

Calculation of electric field at biochar surface

USING SCHOTTKY'S ASSUMPTION FOR METALS

ELECTRIC FIELD ALSO PRODUCED BY OUT-OF-PLANE ELECTRONS

$$E \approx \frac{\epsilon}{4r^2}$$

Calculation of electric field at surface

CARBON \rightarrow 4.34 eV r_O = 1.6 X 10⁻⁸ m (0.16 nm)

Calculation of electric field at surface

Can this electric field impact water sorption?

However -

The work function is not a static characteristic of a bulk material

- A property of the current surface state
 - Crystal face
 - Contamination (water/CO₂/chemisorbed O₂)
 - Other contamination ash component/soil particles

Heteroatoms – replacements of carbon

EPR DATA CONFIRMS THE G-VALUES INCREASE FOR UNPAIRED ELECTRONS LOCALIZED AT HETEROATOMS (N, O, S) COMPARED TO UNPAIRED ELECTRONS LOCALIZED AT CARBON ATOMS.

WĮĘCKOWSKI EXP TECHN PHYS, 36 (1988), P. 299

Why similar biochar composition results in different sorption?

- Heating profile
 - >> rate of temp increase and decrease
- Duration and atmosphere composition
- Initial moisture content of feedstock
- "Aging" (interactions with water vapor or carbon dioxide, or loss of unpaired electrons)

Biochar Sorption – Surface Area, Oxygen, or

Surface Area

- Correlation between biochar from same pyrolysis unit
- Less universally across studies or feedstock types

Oxygen Content

- Improved correlations within same pyrolysis unit
- İmproved correlation across different studies
- Although not deterministic for different feedstocks

Unpaired spin number

- Improved predictable especially across different biomass types
- Mechanism?

Why does this happen?

$$\Psi_{total} = \Psi_{ref} + \Psi_{\Pi} + \Psi_{M} + \Psi_{pres} + \Psi_{grav} + \Psi_{electro} + \Psi_{humidity}$$

With biochar addition

Osmotic, electrostatic and humidity ≠ 0

- Ash component of BC
- Electrostatic field on biochar
- Impacts on relative humidity

$$\Psi_{\Pi} = -C_{m}RT$$

$$\Psi_{e} \to \frac{1}{r^{2}}$$

$$\psi = \frac{RT}{M}\ln(h_{r})$$

Contact charging phenomenon

RELATED TO THE WORK FUNCTION OF THE MATERIALS

Material	Work function (eV)
BC (charcoal)	4.32
Coal	3.93
Brass (old)	4.87
Plexiglass	3.50
Stainless Steel	4.40
Copper	4.38
"Mineral Matter"	5.40
Aluminum	4.06 – 4.26

BIOCHAR SIEVED IN PLASTIC SIEVE POSITIVE SURFACE CHARGE

BIOCHAR SIEVED IN BRASS SIEVE
NEGATIVE SURFACE CHARGE

BIOCHAR SIEVED IN SS SIEVE

NO CHANGE TO NEGATIVE CHARGE

UPON MATERIAL CONTACT:
LOWER WORK FUNCTION MATERIAL ACQUIRES NEGATIVE SURFACE CHARGE

Gupta et al. Powder Technology, 75 (1993) 79-87

Additional complications:

What if biochar particles and mineral matter collide

mixing or flow stream (pouring)
small particle sizes <50 micron

Material	Work function (eV)	
BC (charcoal)	4.32	
"Mineral Matter"	5.40	

UPON MATERIAL CONTACT:

LOWER WORK FUNCTION MATERIAL ACQUIRES NEGATIVE SURFACE CHARGE BIOCHAR NEGATIVE CHARGED

Iron Mineralogy: Impacts SA/Pore Volumes

Iron Mineral	Surface Area (m²/g)	Pore volume (cm³/g)
Magnetite	6	o (non-porous)
Goethite	80	0.23
Hematite	12	0.25
Ferrihydrite	800-1000	0.40

Iron Mineralogy – Temperature Impacts

Spokas (unpublished) and Regenspurg et al., 2004

Thank-you for your attention.